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Abstract. We consider the parameterized complexity of the Unique
Coverage problem: given a family of sets and a parameter k, we ask
whether there exists a subfamily that covers at least k elements exactly
once. This NP-complete problem has applications in wireless networks
and radio broadcasting and is also a natural generalization of the well-
known Max Cut problem. We show that this problem is fixed-parameter
tractable with respect to the parameter k. That is, for every fixed k, there
exists a polynomial-time algorithm for it. One way to prove a problem
fixed-parameter tractable is to show that it is kernelizable. To this end,
we show that if no two sets in the input family intersect in more than c
elements there exists a problem kernel of size kc+1. This yields a kk kernel
for the Unique Coverage problem, proving fixed-parameter tractabil-
ity. Subsequently, we show a 4k kernel for this problem. However a more
general weighted version, with costs associated with each set and profits
with each element, turns out to be much harder. The question here is
whether there exists a subfamily with total cost at most a prespecified
budget B such that the total profit of uniquely covered elements is at
least k, where B and k are part of the input. In the most general set-
ting, assuming real costs and profits, the problem is not fixed-parameter
tractable unless P = NP. Assuming integer costs and profits we show
the problem to be W [1]-hard with respect to B as parameter (that is, it
is unlikely to be fixed-parameter tractable). However, under some rea-
sonable restriction, the problem becomes fixed-parameter tractable with
respect to both B and k as parameters.

1 Introduction

In this paper, we consider the parameterized complexity of the Unique Cov-
erage problem. This problem was introduced by Demaine et al. [2] as a nat-
ural maximization version of Set Cover and has applications in several ar-
eas including wireless networks and radio broadcasting. Unique Coverage is
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defined as follows. Given a ground set U = {1, 2, . . . , n}, a family of subsets
S = {S1, . . . , St} of U and a positive integer k, we ask whether there exists a
subcollection S ′ ⊆ S such that at least k elements are covered uniquely by the
members in S ′. An element is covered uniquely if it appears in exactly one set
of S ′. The optimization version requires to maximize the number of uniquely
covered elements.

The weighted version of Unique Coverage is called Budgeted Unique
Coverage and is defined as follows. Given a ground set U = {1, 2, . . . , n}, a
profit pi for each element i ∈ U , a family of subsets S of U , a cost ci for each
set Si ∈ S, a budget B and a positive integer k, we ask whether there exists
a subset S ′ ⊆ S such that the total cost of S ′ is at most B and such that the
profit of the uniquely covered elements is at least k. The optimization version
asks for a subset S ′ of total cost at most B such that the profit of uniquely
covered elements is maximized.

The original motivation for this problem is a real-world application arising
in wireless networks [2]. Assume that we are given a map of the densities of
mobile clients along with a set of possible base stations, each with a specified
building cost and a specified coverage region. The goal is to choose a set of base
stations, subject to a budget on the total building cost, in order to maximize the
density of served clients. The difficult aspect of this problem is the interference
between base stations. A mobile client’s reception is better when it is within the
range of a few base stations. An ideal situation is when every mobile client is
within the range of exactly one base station. This is the situation modelled by
the Budgeted Unique Coverage problem. The Unique Coverage problem
is closely related to a single “round” of the Radio Broadcast problem [1]. For
more about this relation, see Demaine et al.’s work [2].

One can also view the Unique Coverage problem as a generalization of
the Max Cut problem [2]. The input to the Max Cut problem consists of a
graph G = (V,E) and the goal is to find a cut (T, T ′), where ∅ 6= T ⊂ V and T ′ =
V \T , that maximizes the number of edges with one endpoint in T and the other
endpoint in T ′. Let U denote the set of edges of G and for each vertex v ∈ V
define Sv = {e ∈ E : e is incident to v}. Finally let S = ∪v∈V {Sv}. Then G
has a cut (T, T ′) with at least k edges across it if and only if S ′ = ∪v∈T {Sv}
uniquely covers at least k elements of the ground set.

Known Results. (Budgeted) Unique Coverage was introduced by Demaine
et al. [2]. They have considered the approximability of this problem. On the
positive side, they give an Ω(1/ log n)-approximation for Budgeted Unique
Coverage. Moreover, if the ratio between the maximum cost of a set and the
minimum profit of an element is bounded by B, then there exists an Ω(1/ log B)-
approximation. Concerning approximation hardness, they show that Unique
Coverage is hard to approximate to within a factor of O(1/ logc n) for some
constant 0 < c ≤ 1, and they strengthen this inapproximability to O(1/ log n)
based on a hardness hypothesis for Balanced Bipartite Independent Set.
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Unique Coverage (Parameter: k) Result Sect.

Each element occurs in at most b sets (k − 1)b kernel 3.1
Intersection size bounded by c kc+1 kernel 3.2

General 4k kernel 3.3

Each set of size at most b 2b+k kernel 3.3

Budgeted Unique Coverage

Arbitrary costs/profits (pars. B and k) Not FPT (unless P = NP) 4.1
Integer weights (par. B) W [1]-hard 4.1

Integer weights (intersection number f(k);
pars. B and k)

O∗((B · 2f(k))B+k)-time algo. 4.2

Integer weights (pars. B and k) Open

Fig. 1. Main results in this paper.

Our Results. In this paper, we give first-time results on the parameterized com-
plexity of Unique Coverage and Budgeted Unique Coverage. Compared
to the related Set Cover problem, which is W[2]-complete with respect to
the number of sets in the solution as parameter3, Unique Coverage becomes
fixed-parameter tractable with respect to the number of uniquely covered ele-
ments. In other words, the number of uniquely covered elements seems to be a
good parameter in order to exploit and reveal the inherent structure of coverage
problems in general. Our results indicate that the budgeted variant, Budgeted
Unique Coverage, is a much harder problem. More specifically, we show the
following.

We show that a special case of Unique Coverage where any two sets in
the input family intersect in at most c elements is fixed-parameter tractable
by demonstrating a polynomial kernel of size kc+1. This leads to a problem
kernel of size kk in the general case, proving that Unique Coverage is fixed-
parameter tractable. However, the general case can be improved using results
from extremal combinatorics on strong systems of distinct representatives to
obtain a 4k kernel. For the Budgeted Unique Coverage problem there are
several variants. If the profits and costs are allowed to be arbitrary positive real
numbers, then Budgeted Unique Coverage, with parameters B and k, is
not fixed-parameter tractable unless P = NP. If we restrict the costs and profits
to be positive integers and parameterize by B, then the problem is W [1]-hard. In
the case when the number of sets intersecting any given set of the input family
is bounded by a function of k, the problem is fixed-parameter tractable with
parameters B and k. The main results of this paper along with the relevant
sections in which they appear are depicted in Figure 1.

3 This can be shown by a reduction from Dominating Set [3, 6].
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2 Preliminaries

We briefly introduce the necessary concepts concerning parameterized complex-
ity. A parameterized problem is a subset of Σ∗×N, where Σ is a finite alphabet
and N is the set of natural numbers. An instance of a parameterized problem is
therefore a pair (I, k), where k is the parameter. In the framework of parameter-
ized complexity, the running time of an algorithm is viewed as a function of two
quantities: the size of the problem instance and the parameter. A parameterized
problem is said to be fixed parameter tractable (FPT) if there exists an algo-
rithm for the problem with running time f(k) · |I|O(1), where f is a computable
function only depending on k.

A common method to prove that a problem is fixed-parameter tractable is
to provide data reduction rules that lead to a problem kernel. A data reduction
rule is a polynomial-time algorithm which takes a problem instance (I, k) and
either

– outputs yes or no according as (I, k) is a yes or a no-instance, or
– replaces (I, k) by an equivalent instance (I ′, k′) such that |I ′| ≤ |I| and k′ ≤ k,

where two problem instances (I, k) and (I ′, k′) are equivalent if they are both
yes-instances or both no-instances. An instance to which none of a given set of
data reduction rules applies is called reduced with respect to this set of rules. A
parameterized problem is said to have a problem kernel if the resulting reduced
instance has size f(k) for a function f depending only on k. If a parameterized
problem has a kernel, then it is clearly fixed-parameter tractable. Simply use
brute-force on the kernel to decide whether the given instance is a yes-instance
or not.

A parameterized problem π1 is fixed-parameter reducible to a parameterized
problem π2 if there exist functions f, g : N→ N, Φ : Σ∗×N→ Σ∗ and a polyno-
mial p(·) such that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2

computable in time f(k) ·p(|I|) and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2.
The basic complexity class for fixed-parameter intractability is W [1] as there is
strong evidence that W [1]-hard problems are not fixed-parameter tractable [3].
To show that a problem is W [1]-hard, one needs to exhibit a fixed-parameter
reduction from a known W [1]-hard problem to the problem at hand. For more
on parameterized complexity see [3, 5].

We write O∗(f(k)) to denote a running time of O(f(k) · poly(n, k)), where n
is the input size and k is the parameter. That is, we use the O∗(·) notation to
suppress polynomial factors in the running time.

3 The Unique Coverage Problem

Let (U = {1, 2, . . . , n},S = {S1, S2, . . . , Sm}, k) be an instance of Unique Cov-
erage. Apply the following data reduction rules on (U ,S, k) until no longer
applicable.
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R1 If there exists Si ∈ S such that |Si| ≥ k, then the given instance is a
yes-instance.

R2 If there exists S1, S2 ∈ S such that S1 = S2, then delete S1.

These reduction rules are obviously correct. In the following we always assume
that the given instance of Unique Coverage is reduced with respect to the
above rules.

3.1 Bounded Number of Occurrences

We begin with the simple case where each element e ∈ U is contained in at
most b sets of S. A special case of this situation is Max Cut (b = 2).

Lemma 1. If each element e ∈ U occurs in at most b sets of S then the Unique
Coverage problem admits a kernel of size b(k − 1).

Proof. Find a maximal collection S ′ of pairwise disjoint sets in S. If |∪S∈S′ S| ≥
k, we are done. Therefore assume | ∪S∈S′ S| ≤ k − 1. Since every set in S − S ′
intersects some set in S ′ and since every element occurs in at most b sets in S,
we have |S − S ′| ≤ (k − 1)(b− 1). But |S ′| ≤ k − 1 and so |S| ≤ b(k − 1). ut

The proof of Lemma 1 applies a proof principle which is a basis for the proof of
the following more complicated case.

3.2 Bounded Intersection Size

Consider the situation where for all Si, Sj ∈ S we have |Si ∩ Sj | ≤ c, for some
constant c. In this case we say that the problem instance has bounded intersection
size c and show that the problem admits a polynomial kernel of size O(kc+1).
First consider the case when |Si ∩ Sj | ≤ 1.

Lemma 2. Suppose that for all Si, Sj ∈ S, i 6= j, we have |Si ∩ Sj | ≤ 1. If an
element e ∈ U is covered by at least k + 1 sets, then one can obtain a solution
covering k elements uniquely in polynomial time.

Proof. Suppose an element e ∈ U is covered by the sets S1, . . . , Sk+1. Then by
reduction rule R2, at most one of these sets can have size 1. The remaining k
sets uniquely cover at least one element each. ut

One can now easily obtain a kernel of size k2 for the case when the intersection
size is at most 1.

Lemma 3. Suppose that for all Si, Sj ∈ S, |Si ∩Sj | ≤ 1. If |S| ≥ k2, then there
exists T ⊆ S that covers at least k elements uniquely.

Proof. Greedily find a maximal collection S ′ = {S1, . . . , Sp} of pairwise disjoint
sets in S. Note that if |∪Si∈S′Si| ≥ k, then we are done. Therefore assume, |∪S∈S′

S| ≤ k− 1 (this also implies p ≤ k− 1). Since |S| ≥ k2, and since every set in S
intersects with at least one set in S ′, by the pigeonhole principle there exists an
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element e ∈ ∪S∈S′S such that at least k+1 sets T1, . . . , Tk+1 in S−{S1, . . . , Sp}
contain e. For otherwise, each element in ∪S∈S′S is contained in at most k sets
of S \ S ′, which implies that |S| ≤ (k − 1)k + p < k2, a contradiction. By
Lemma 2, this collection T = {T1, . . . , Tk+1} of k + 1 sets uniquely covers at
least k elements. ut

Next, we generalize these observations to the case when |Si ∩ Sj | ≤ c, for
some constant c.

Theorem 1. Suppose that for all Si, Sj ∈ S we have |Si ∩ Sj | ≤ c, for some
positive constant c. If |S| ≥ kc+1 then there exists T ⊆ S that covers k elements
uniquely.

Proof. By induction on c. For c = 1, this follows from Lemma 3. Assume the the-
orem to hold for c > 1. Greedily obtain a maximal collection S ′ = {S1, . . . , Sp}
of pairwise disjoint sets. If | ∪Si∈S′ Si| ≥ k then we are done. Therefore as-
sume | ∪S∈S′ S| ≤ k − 1 (this also implies p ≤ k − 1). Since |S| ≥ kc+1, and
since every set in S intersects with at least one set in S ′, there exists e ∈ ∪S∈S′S
such that at least kc + 1 sets in S − {S1, . . . , Sp} contain e. For otherwise,
|S| ≤ (k − 1)kc + p < kc+1, a contradiction. Let T1, . . . , Tkc+1 be some kc + 1
such sets. Delete e from each of these sets. We obtain at least kc nonempty
distinct sets T ′

1, . . . , T
′
kc (there is at most one set consisting of the element e

only which is deleted in this process). Note that any two of these sets inter-
sect in at most c − 1 elements. By induction hypothesis, there exists a collec-
tion T ′ ⊆ {T ′

1, . . . , T
′
kc} that uniquely covers at least k elements, and thus there

exists a collection T ⊆ {T1, . . . , Tkc} that uniquely covers at least k elements
(just take the solution for T ′ and add e to every set in it). This proves the the-
orem. ut

Corollary 1. Unique Coverage admits a kernel of size kc+1 for bounded
intersection size c.

Note that c ≤ k−1 and therefore for the general case we have a kernel of size kk.

Corollary 2. The Unique Coverage problem is fixed-parameter tractable and
admits a problem kernel of size kk.

An algorithm that checks all possible subsets of a family of size kk to see whether
any of them uniquely covers at least k elements is an FPT algorithm with time
complexity O∗(2(kk)). But note that we can assume without loss of generality
that every set in the solution covers at least one element uniquely. Thus it suffices
to check whether subfamilies of size at most k uniquely cover at least k elements.
This can be done in time O∗(kk2

) = O∗(2k2 log k). However, this kernelization
result is tailored especially for the bounded intersection size case. It turns out
that a much better kernel can be obtained for the general case.



Proc. 18th ISAAC, LNCS 4835, pp. 621-631, 2007

3.3 General Case

We now show that Unique Coverage has a kernel of size 4k using a re-
sult on strong systems of distinct representatives. Given a family of sets S =
{S1, . . . , Sm}, a system of distinct representatives for S is an m-tuple (x1, . . . , xm)
where the elements xi are distinct and xi ∈ Si for all i = 1, 2, . . . ,m. Such a
system is strong if we additionally have xi /∈ Sj for all i 6= j. The next theorem
due to Füredi and Tuza appears in Jukna’s textbook [4].

Theorem 2. In any family of more than
(
r+s

s

)
sets of cardinality at most r, at

least s + 2 of its members have a strong system of distinct representatives.

Given an instance (U = {1, . . . , n},S = {S1, . . . , Sm}, k) of Unique Coverage,
put r = k − 1 and s = k in the statement of the above theorem and we have a
kernel of size

(
2k−1
k−1

)
≤

(
2k
k

)
≤ 22k.

Corollary 3. Unique Coverage admits a problem kernel of size 4k.

Note that this implies that there is an O∗(4k2
) time FPT algorithm for the

Unique Coverage problem.
For the case where each set of the input family has size at most b, for some

constant b, there is a better kernel. By Theorem 2, if there exists at least
(
b+k

k

)
sets in the input family, then there exists at least k sets with a strong system of
distinct representatives.

Corollary 4. If each set S ∈ S has size at most b then the Unique Coverage
problem has a kernel of size O(2b+k).

4 The Budgeted Unique Coverage Problem

In this section we consider the Budgted Unique Coverage problem where
each set in the input family has a cost and each element in the universe has a
profit; the goal is to decide whether there exists a subcollection of total cost at
most B that uniquely covers elements of total profit at least k. By parameterizing
on k or B or both we obtain different parameterized versions of this decision
question.

4.1 Hardness Results

We first consider the Budgeted Max Cut problem which is a specialization
of the Budgeted Unique Coverage problem. An instance of this problem is
an undirected graph G = (V,E) with a cost function c : V → R+ on the vertex
set and a profit function p : E → R+ on the edge set; positive real numbers B
and k. The question is whether there exists a cut (T, T ′) such that the total cost
of the vertices in T is at most B and the total profit of the edges crossing the
cut is at least k.

We first show that the Budgeted Max Cut problem with arbitrary positive
real costs and profits is probably not FPT.
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Lemma 4. The Budgeted Max Cut problem with arbitrary positive costs
and profits with parameters B and k is not FPT, unless P = NP.

Proof. Suppose there exists an algorithm for the Budgeted Max Cut problem
(with arbitrary positive costs and profits) with running time O(f(k, B)·poly(n)).
We will use this to solve the decision version of Max Cut in polynomial time.
Let (G = (V,E), k) be an instance of the Max Cut problem, where |V | = n.
Assign each vertex of the input graph cost 1/n and each edge profit 1/k. Let the
budget B = 1/2 and the profit k′ = 1. Clearly, G has a maximum cut of size at
least k iff there exists S ⊆ V of total cost at most B such that the total profit
of the edges crossing the cut (S, V − S) is at least k′. And this can be answered
in time O(f(1, 1/2) · p(|V |)), implying P = NP. ut

Theorem 3. The Budgeted Unique Coverage problem with arbitrary pos-
itive costs and profits is not FPT, unless P = NP.

Henceforth by the ‘budgeted’ version we mean the case when the costs and
profits are positive integers. We next show that the Budgeted Max Cut prob-
lem parameterized by the budget B alone is W [1]-hard.

Lemma 5. The Budgeted Max Cut problem parameterized by the budget is
W [1]-hard.

Proof. To show W [1]-hardness, we exhibit a fixed-parameter reduction from the
Independent Set problem to the Budgeted Max Cut problem with unit
costs and profits. Let (G = (V,E), B) be an instance of Independent Set
with |V | = n. For every vertex u ∈ V add |V | − 1 − deg(u) new vertices and
connect them to u. Call the resulting graph G′. Note that every vertex u ∈ G
has degree |V |− 1 in G′. We let (G′ = (V ′, E′), B, k = B(n− 1)) be the instance
of Budgeted Max Cut.

Claim. G has an independent set of size B iff G′ has a cut (S, V ′ − S) such
that |S| = B and at least k = B(n− 1) edges lie across it.

If G has an independent set S of size B, then clearly S is independent in G′.
The cut (S, V ′−S) does indeed have B(n− 1) edges crossing it, as every vertex
of S has degree n−1. Next suppose that G′ has a cut (S, V ′−S) such that |S| = B
and B(n− 1) edges cross the cut. Note that every vertex in S must be a vertex
from G. Otherwise the cut cannot have B(n− 1) edges crossing it. Suppose two
vertices u and v in S are adjacent. Then both u and v contribute less than n− 1
edges to the cut. Since each vertex in S contributes at most n − 1 edges to
the cut, the number of edges crossing the cut must be less than B(n − 1), a
contradiction. Hence S is independent in G′ and hence G has an independent
set of size B. ut

Since the Budgeted Unique Coverage problem is a generalization of
Budgeted Max Cut we have

Theorem 4. The Budgeted Unique Coverage problem parameterized by
the budget B is W [1]-hard.
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4.2 A Fixed-Parameter Tractability Result

In this subsection, we give an FPT algorithm for Budgeted Unique Cover-
age, when B and k are parameters, assuming that for every set S in the input
family the number of sets with a non-empty intersection with S is at most some
function of k. This is a natural situation in real-world applications; for example,
in wireless networks. For the Budgeted Max Cut problem, for instance, every
set is intersected by at most k − 1 sets.

Let (U = {1, . . . , n},S = {S1, . . . , Sm}, c, p, B, k) be an instance of the Bud-
geted Unique Coverage problem where c : S → N and p : U → N. For T ⊆ S,
define c(T ) =

∑
S∈T c(S) and p(T ) to be the total profit of the elements uniquely

covered by T . If Si ∈ S, define N [Si] to be the set of all members of S that
have a nonempty intersection with Si. We can without loss of generality assume
that c(Si) ≤ B and |Si| ≤ k − 1 for all 1 ≤ i ≤ m. In what follows, we assume
that for all Si ∈ S, we have |N [Si]| ≤ f(k) for some function f .

The FPT algorithm that we describe here builds the solution in stages. Note
that if we decide to include a set S in the solution, there is no way of deciding how
many elements S covers uniquely unless we make choices for each set in N [S]. To
get around this, the algorithm, at any stage, decides whether or not to include
a subfamily A ⊆ N [S] for some set S. If it includes A in the solution, then it
automatically excludes N [S] \ A from it. The current solution is a pair (T , T ′),
where T , T ′ ⊆ S and T ∩ T ′ = ∅. The sets included by the algorithm in the
solution till the current stage are in T ; those excluded from the solution are
in T ′.

Call a pair (T , T ′) a feasible solution for an instance of Budgeted Unique
Coverage if T ′ = S − T , c(T ) ≤ B and p(T ) ≥ k. A pair (T , T ′) is a partial
solution if T , T ′ ⊆ S and T ∩T ′ = ∅. A partial solution (T , T ′) can be extended
to a feasible solution if there exist X ,X ′ ⊆ S − (T ∪ T ′) such that X ∩ X ′ = ∅
and (T ∪ X , T ′ ∪ X ′) is a feasible solution. A partial solution (T , T ′) is strong
if for each set Si ∈ T , N [Si] ⊆ T ∪ T ′. Given a strong partial solution (T , T ′),
let U1, . . . ,Ut be a partition of S − (T ∪ T ′) according to costs. That is, all
members in any set Ui have the same cost ci and for all i 6= j, ci 6= cj . Note
that t ≤ B. For each Ui, let Umax

i denote a member of Ui with maximum total
profit.

Lemma 6. Let (T , T ′) be a strong partial solution and let U1,U2, . . . ,Ut be a
partition of S−(T ∪T ′) according to costs. Suppose (T , T ′) can be extended to a
feasible solution by adding a member of Ui to T . Then there exists an extension
of (T , T ′) into a feasible solution such that T ∩N [Umax

i ] 6= ∅.

Proof. Suppose (T , T ′) can be extended to a feasible solution (X ,X ′) by adding
a member U ∈ Ui to T and that X ∩N [Umax

i ] = ∅. This means N [Umax
i ] ⊆ X ′.

Remove U from X and replace it by Umax
i . Note that every element of Umax

i

is uniquely covered and that the total profit of these newly uniquely covered
elements is at least as that of those covered by U . Since c(U) = c(Umax

i ), the
new solution continues to be feasible. ut
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One can use Lemma 6 to develop an FPT algorithm with time complex-
ity O∗((B · 2f(k))B+k). Suppose there exists a feasible solution to the given
input instance. We start with a strong feasible solution (T = ∅, T ′ = ∅). Parti-
tion the input family S according to costs into the subfamilies U1, . . . ,Ut. Note
that t ≤ B. Since there exists a feasible solution, it has to include a set from one
of the subfamilies Ui. For each choice of a subfamily, Lemma 6 assures us that
it is sufficient to consider a set S in the subfamily which maximizes profit. We
consider all possible bipartitions (A,A′) of N [S] such that A 6= ∅ and each mem-
ber in A uniquely covers at least one element. For each such bipartition (A,A′),
set T ← T ∪ A and T ′ ← T ′ ∪ A′. Since by our assumption, |N [S]| ≤ f(k),
there are at most 2f(k) such bipartitions. This gives an initial branching factor
of B · 2f(k).

We then recurse using Lemma 6. In order to recurse, we must first ensure that
the current partial solution is strong. We achieve this by considering all possible
bipartitions of N [T ]− (T ∪T ′) for all sets T ∈ T for which N [T ]− (T ∪T ′) 6= ∅.
As before, we are interested in bipartitions (A,A′) which have the property
that each set in T ∪ A uniquely covers at least one element. For each such
bipartition (A,A′), we set T ← T ∪A and T ′ ← T ′ ∪A′. There are at most 2k

such bipartitions and for each bipartition, we either increase the cost of the
solution or total profit of uniquely covered elements by at least 1. If at any
stage of recursion, we find that there is no subfamily Ui such that for U ∈
Ui, c(U) ≤ B − c(T ), we abort that branch. If p(T ) ≥ k, at any stage, we
halt and output yes. The overall depth of the recursion tree is at most B + k
and the branching factor is at most B · 2f(k). The overall time complexity is
therefore O∗((B ·2f(k))B+k). If the algorithm does not return a solution then we
can safely conclude that the given instance is a no-instance.

Theorem 5. Suppose (U ,S, c, p, B, k) is an instance of the Budgeted Unique
Coverage problem where for every set S ∈ S, we have |N [S]| ≤ f(k). Then
there is an algorithm with time complexity O∗((B · 2f(k))B+k) for this problem.

The Budgeted Max Cut problem is a special case where |N [S]| ≤ k − 1
for all S ∈ S, and the following corollary is immediate.

Corollary 5. The Budgeted Max Cut problem with positive integer costs
and profits is fixed-parameter tractable when parameterized by B and k. There
is an algorithm with time complexity O∗((B · 2k)B+k) for this problem.

5 Concluding Remarks

In this paper, we considered the parameterized complexity of the Unique Cov-
erage problem. There are several directions in which to proceed. Firstly, the
reduction rules that we give are almost trivial and the kernel that we obtain is
exponential in k. Kernelization is a very important topic in the design of FPT
algorithms and the challenge is to devise reduction rules to obtain a polyno-
mial (linear?) kernel or prove that no such kernel exists under some plausible
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complexity-theoretic assumption. Are there reduction rules that lead to a bet-
ter problem kernel? In particular, is there a polynomial kernel for the Unique
Coverage problem?

At this point, all we can show is that with respect to a broader set of reduction
rules, which we do not state here, the kernel size is at least Ω(2k/

√
k/2). The

following example illustrates this situation. Let U = {1, 2, . . . , k}, S = S1 ∪ S2,
where S1 consists of all subsets of U of size exactly dk/2e + 1 and S2 is some
collection of subsets of U of size at most k/4. Note that |S1| =

(
k

dk/2e+1

)
, which

by Stirling’s approximation is, Ω(2k/
√

k/2). If S2 = ∅ then one can show that
the given instance is a no-instance. But we can always produce an S2 6= ∅
such that the given instance is a yes-instance and such that our reduction rules
do not change the size of the input instance. For instance, if we take S2 =
{{dk/2e + 2}, . . . , {k}}, then this is a yes-instance and we can show that our
reduction rules do not alter the size of the input.

Another important question is whether there exists a good branching algo-
rithm for Unique Coverage. The algorithm that we gave runs in time O∗(4k2

).
Finally, is the Budgeted Unique Coverage problem with positive integer
costs/profits, with parameters B and k, fixed-parameter tractable?
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