
Proc. AGT 2009

On Generating Triangle-Free Graphs

Daniel Brügmann 1 Christian Komusiewicz 2 Hannes Moser 3

Institut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, D-07743 Jena, Germany

daniel.bruegmann@uni-jena.de, {ckomus,moser}@minet.uni-jena.de

Abstract

We show that the problem to decide whether a graph can be made triangle-free
with at most k edge deletions remains NP-complete even when restricted to planar
graphs of maximum degree seven. In addition, we provide polynomial-time data
reduction rules for this problem and obtain problem kernels consisting of 6k vertices
for general graphs and 11k/3 vertices for planar graphs.

Keywords: NP-complete problem, parameterized algorithmics, kernelization.

1 Introduction

The problem of destroying all triangles of a graph by edge deletions (also see
[2,5]) can be formulated as follows.

Triangle Edge Deletion

Input: An undirected graph G, a nonnegative integer k.
Question: Can we transform G, by deleting ≤ k edges, into a triangle-free
graph?

1 Student of the Carl-Zeiss-Gymnasium Jena, Erich-Kuithan-Str. 7, D-07743 Jena.
2 Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.
3 Supported by the Deutsche Forschungsgemeinschaft, project AREG, NI 369/9.

Proc. AGT 2009

Unfortunately, Triangle Edge Deletion is NP-complete [9], destroying
hope for polynomial-time algorithms. We show that it remains NP-complete
even when restricted to planar graphs of maximum degree seven (Section 2).
This motivates our subsequent study of fixed-parameter algorithms [7] for this
problem (Section 3). In particular, we focus on kernelization [4,7], that is, we
devise efficient (polynomial-time) and effective (yielding an instance whose
size is bounded by the parameter) data reduction rules. For general graphs,
we show that in O(m

√
m) time we can create an equivalent instance consisting

of at most 6k vertices. For planar graphs, we strengthen this result by showing
that we can create an instance comprising at most 11k/3 vertices, although
our algorithm requires O(k · n√n) time

Related work. As observed by Gramm et al. [3], one can solve Triangle

Edge Deletion by reducing it to the 3-Hitting Set problem. This reduc-
tion can be performed in O(m

√
m) time, which is the time needed for listing

all triangles of a graph [2]. In combination with the current fastest 3-Hitting

Set algorithm [8], this approach leads to a running time of O(2.076k+m
√

m).
It also follows from this reduction that Triangle Edge Deletion admits a
problem kernel of O(k2) vertices, since we can apply a kernelization algorithm
for 3-Hitting Set [1] and then reduce the resulting “kernelized” instance
back to Triangle Edge Deletion. 4

Due to the lack of space, some proofs are omitted.

2 NP-Completeness on Planar Graphs

In this section, we strengthen the hardness result for Triangle Edge Dele-

tion [9], showing that the problem remains NP-hard even when restricted
to planar graphs of maximum degree seven. To this end, we describe a
polynomial-time many-one reduction from the NP-complete Vertex Cover

problem:

Input: An undirected graph G = (V, E), a nonnegative integer k.
Question: Is there a vertex set S ⊆ V of size ≤ k such that G[V \S] has no
edges?

Vertex Cover remains NP-complete even if the input graph is planar and
cubic.Using this, we prove the NP-hardness of Triangle Edge Deletion

on planar graphs, describing a reduction from Vertex Cover on planar

4 In general, we cannot achieve a parameter-preserving reduction from 3-Hitting Set

to Triangle Edge Deletion. However, the used kernelization produces an induced ker-
nel [1], yielding an induced subgraph of the original instance of Triangle Edge Deletion.

Proc. AGT 2009

a) b)

bu1

bu2

bu3

bu4

uv

uv
vu

uw

uw wu

ux

ux

xu

Fig. 1. The gadget graphs used in the reduction from Vertex Cover to Triangle

Edge Deletion. a) Vertex gadget Bu for some vertex u ∈ V . Bold lines are
docking edges. b) Left: Vertex gadget for v ∈ V . Right: Vertex gadget graph
for u ∈ V with N(u) = {v,w, x} connected to the edge gadgets corresponding to its
incident edges. Dashed lines are edges inside edge gadgets, dotted lines are edges
connecting vertex gadget and edge gadgets.

cubic graphs to Triangle Edge Deletion in planar graphs.

Given an instance (G, k) of Vertex Cover, where G = (V, E) is a planar
cubic graph, we construct an instance (G′, k′) of Triangle Edge Dele-

tion as follows. For each u ∈ V , create a planar gadget graph Bu as shown
in Figure 1a. This gadget graph has 3 “docking” edges, namely {bu1, bu2},
{bu2, bu3}, and {bu3, bu4}, which are used for attaching the edge gadgets. Then,
for each edge {u, v} ∈ E, create a triangle consisting of the vertex set Tuv =
{uv, uv, vu}. This triangle is then attached to the vertex gadgets Bu and Bv as
follows. For triangle Tuv and vertex gadget Bu, add the edges {uv, bui},{uv, buj}
and {uv, buj} to E ′, where {bui, buj} is a docking edge that has not been used
before. Vertex gadget Bv is attached analogously. Since G is cubic, the three
docking edges that each vertex gadget provides suffice and each docking edge
is used. Note that one can ensure planarity, by using the docking edges of u
according to the relative order of neighbors of u given by an embedding of G.
Since all gadgets are planar, this yields a planar graph.

The idea behind this construction is the following. Each edge {u, v} of the
original graph G must have at least one of its endpoints in the vertex cover.
Correspondingly, for each triangle Tuv at least one edge must be deleted. Con-
sider the graph Cu induced by the vertex set V (Bu)∪{ux, ux, uw, uw, uv, uv}.
Note that the minimum number of edge deletions to make Cu triangle-free
is six. However, if one of the “outer” edges {ux, ux}, {uw, uw}, {uv, uv} is
deleted, it is possible to delete the other two outer edges while only deleting
seven edges. Note that this is the minimum number of edge deletions to make
Cu triangle-free under the constraint of having to use one of the outer edges.
If we do so, we destroy all triangles in edge gadgets for edges incident to u.

Proc. AGT 2009

Conversely, if there is a solution for the constructed instance of Triangle

Edge Deletion, there always is an optimal solution for Triangle Edge

Deletion which does not contain the “third” edge {uv, vu} and consequently
“activates” Cu or Cv, making the deletion of all the outer edges of one of these
two graphs possible. There are at most k vertex gadgets corresponding to
members of the vertex cover, hence we set k′ := 7k + 6(|V | − k) = 6|V | + k.
Observe that the maximum degree in G′ is seven. Obviously, Triangle Edge

Deletion is in NP.

Theorem 2.1 Triangle Edge Deletion is NP-complete even when re-

stricted to planar graphs of maximum degree seven.

3 Problem Kernelization

In this section, we describe two kernelization algorithms, one for general
graphs, which produces a kernel consisting of 6k vertices, and one for pla-
nar graphs, which produces a kernel consisting of only 11k/3 vertices. The
kernelization for general graphs is based on ideas for kernelizing Hitting

Set [1] and Vertex-Disjoint Triangle Packing [6]. First, we apply the
following simple data reduction rule, which is obviously correct.

Reduction Rule 1 Remove all vertices and edges that are not contained in

any triangle in G.

In the following, assume that G is reduced with respect to Reduction Rule 1.
The general strategy of our kernelization algorithm is as follows. First, greedily
compute a maximal set T of edge-disjoint triangles in G. If |T | > k, then
the input graph is a No-instance, because each edge in a solution can destroy
at most one triangle in T . Hence, in the following we assume that |T | ≤ k.
Obviously, there can be at most 3k vertices that are part of a triangle in T .
The task is now to bound the number of vertices that are not part of any
triangle in T . Let I := V \ V (T) be the set of these vertices. It holds that

• I is an independent set and

• every triangle containing a vertex v ∈ I shares exactly one edge with a
triangle in T .

The two properties follow from the fact that T is a maximal set of edge-disjoint
triangles and can be easily verified.

To give an intuition for our next data reduction rule that bounds the size
of I, we start with a simple example. Suppose that there are two vertices u, v ∈
I, each of which is contained in exactly one triangle, such that both triangles Tu

Proc. AGT 2009

and Tv share the same edge e with a triangle in T . It is easy to verify that it
is always optimal to delete e in order to destroy the two triangles Tu and Tv.
Moreover, this is still true even if we remove one of the vertices u or v (thereby
decreasing the size of I). This idea can be generalized as follows. Suppose one
can find a set I ′ ⊆ I and an edge subset E ′ ⊆ E(T) such that

(C1) the triangles containing a vertex in I ′ only share edges in E ′ with trian-
gles in T , and

(C2) one can assign a unique vertex ve ∈ I ′ to each edge e ∈ E ′, such that e∪
{ve} induces a triangle in G.

If so, we have identified a set of |E ′| edge-disjoint triangles, one for each
edge e ∈ E ′. Since each triangle containing a vertex in I ′ contains an edge
of E ′, we know that deleting all edges in E ′ is always optimal. This argument
still holds if we remove all vertices in I ′′, where I ′′ ⊆ I ′ is the set of all
unassigned vertices. We will see that if I is too big, then there always exist
such sets I ′ and E ′ and we can identify in polynomial time some vertices I ′′

that can be removed from the graph. In the following, we give the formal
proof, which is based on matching techniques.

Define an auxiliary bipartite graph B as follows. The vertex set consists
of I as one partite set and J := {ve | e ∈ E(T)} as the other, and B contains
an edge {u, ve} if {u} ∪ e induces a triangle in G.

Reduction Rule 2 Compute a maximum matching in B. Remove all un-

matched vertices in I from G.

Lemma 3.1 Reduction Rule 2 is correct, that is, G is a Yes-instance if and

only if the graph resulting by removing all unmatched vertices in I from G is

a Yes-instance.

Proof. Let M be the computed maximum matching in B and let I ′′ be all
unmatched vertices in I. Since M is maximum, the graph B contains no M-
augmenting path. Intuitively, we will prove that if I ′′ is not empty, assuming
that (C1) and (C2) cannot be fulfilled leads to an M-augmenting path in B.

Let I ′ be the set of vertices in I that are contained in some M-alternating
path starting at some vertex in I ′′ (including zero-length paths, that is, I ′′ ⊆
I ′). Due to the definition of I ′′, each vertex in I ′ \ I ′′ must be matched by M .
Let E ′ ⊆ J be the matching endpoints of the vertices in I ′ \ I ′′ with respect
to M .

We claim that there is no edge from some vertex in I ′ to some vertex
in J \ E ′. Suppose that there is an edge {u, v} connecting u ∈ I ′ and v ∈
J \ E ′. Clearly, {u, v} 6∈ M , thus if v is not matched, then we obtain an M-

Proc. AGT 2009

augmenting path, a contradiction, and if v is matched, then its other matching
endpoint w ∈ I \ I ′ would be contained in an M-alternating path beginning
at some vertex in I ′′, and is therefore contained in I ′, again a contradiction,
showing the claim.

Hence, every vertex in I ′ has only neighbors in E ′, and every vertex in E ′ is
matched. In G, this directly corresponds to a vertex set I ′ and an edge set E ′

fulfilling Conditions (C1) and (C2). Therefore, all unmatched vertices I ′′ can
be safely removed from the graph. 2

Using Reduction Rule 1 and Reduction Rule 2, we obtain our first main
result.

Theorem 3.2 Triangle Edge Deletion admits a problem kernel with 6k
vertices, which can be computed in O(m

√
m) time.

The above results can be further improved when the input is restricted
to planar graphs. In addition to Reduction Rule 1, we apply the following
Reduction Rule 3. Observe that although we use Reduction Rule 3 to obtain
a linear-size problem kernel for Triangle Edge Deletion on planar graphs,
it is correct in non-planar graphs, too. All reduction rules presented in this
paper preserve planarity because they construct a subgraph of G.

Reduction Rule 3 If a triangle in G contains only one edge e contained in

another triangle, delete e, and set k′ := k − 1. If a triangle ∆ in G does not

contain an edge contained in another triangle, delete an arbitrary edge of ∆,

and set k′ := k − 1.

The following argument shows the correctness of Reduction Rule 3. One edge
of the three edges e, f, g of any triangle has to be deleted. Reduction Rule 3
always chooses an edge e, which covers all triangles covered by f or g.

The following lemma identifies a structure which cannot be found arbitrar-
ily often in planar graphs.

Definition 3.3 Let v be a vertex of G. Two edges {{w, b}, {w, c}} ⊆ E(G)
are a base of v if and only if {w, b, c} ⊆ N(v) and {w, b, c, v} are four distinct
vertices. The vertex w contained in both edges of a base is called the base

vertex of v and base vertex of the base {{w, b}, {w, c}}.

Lemma 3.4 Let G = (V, E) be a graph and S ⊆ E with a vertex w ∈
M :=

⋃

e∈S e. Further, let degG[S](w) ≥ 2. If L = V \ M contains more

than 2 degG[S](w) − 2 vertices with a base B ⊆ S with w as the base vertex,

then G is not planar.

Proc. AGT 2009

The omitted proof of Lemma 3.4 uses induction on degG[S](w).

Theorem 3.5 Triangle Edge Deletion on planar graphs admits a prob-

lem kernel comprising ≤ 11k/3 vertices, which can be computed in O(k ·n√n)
time.

Proof. Our kernelization consists of two steps. The first step is the exhaustive
application of Reduction Rule 1 and Reduction Rule 3. This can be done by
enumerating all triangles in O(n

√
n) time and determining for each edge if it

is contained in zero, one or at least two triangles. This needs to be done at
most k times, because every time Reduction Rule 3 is applied, the number of
edges decreases by one. Let I = (G, k) be a instance of Triangle Edge

Deletion on planar graphs reduced with respect to Reduction Rule 1 and
Reduction Rule 3. Let S ⊆ E(G) be a solution of I. Let M be the set
of vertices incident to an edge from S and L := V (G) \ M be the set of
vertices which are not incident to an edge from S. The second step recognizes
instances with solutions consisting of just one edge. We check in O(n

√
n) time

whether it is possible to delete at most one edge in G and obtain a triangle-
free graph by enumerating all triangles in O(n

√
n) time. 5 If this is the case,

we output “Yes”. Otherwise, if k ≤ 1, then we output “No”. Afterwards, we
can assume that |S| ≥ 2, implying |M | ≥ 3. It follows from the definition
of M that |M | ≤ 2k. Now we bound |L| from above by observing that for
all v ∈ L there is a base B ⊆ S of v, because otherwise Reduction Rule 1 or
Reduction Rule 3 could be applied.

Let w be any vertex from M = V (G[S]) and let d = degG[S](w). There are
not more than 2d − 2 vertices v ∈ N which have w ∈ M as the base vertex
corresponding to a base B ⊆ S of v: Cases d = 0 and d = 1 are trivial. See
Lemma 3.4 for d ≥ 2.

Thus there are at most 2d − 2 neighbors of w, which are contained in L
and which have a base B ⊆ S with w as the base vertex. As already shown,
every vertex v ∈ L has a base B ⊆ S, implying that the corresponding base
vertex is in M . It follows that

|L| ≤
∑

w∈M

(

2 degG[S](w) − 2
)

= 2
∑

w∈M

degG[S](w) −
∑

w∈M

2 ≤ 4|S| − 2|M |.

5 Observe that the first two triangles have an edge e in common, and e needs to be in every
other triangle if there is to be a solution comprising only one edge.

Proc. AGT 2009

We used the fact that the sum over all degG[S](w) counts every edge in S
exactly twice. The vertex set V is partitioned into {M, L}, hence

|V | ≤ |M | + |L| ≤ 4|S| − |M |.

Euler’s formula applied to the planar graph G[S] (G is planar) states that |S| ≤
3|M | − 6 for |M | ≥ 3. Note that |M | ≥ 3 holds (see above). Using Euler’s

formula yields |M | ≥ |S|
3

+ 2. Using this, we obtain an upper bound for |V |:

|V | ≤ 4|S| − |S|
3

− 2 ≤ 11

3
|S| − 2 ≤ 11

3
k − 2 ≤ 11

3
k

2

References

[1] F. N. Abu-Khzam. Kernelization algorithms for d-hitting set problems. In Proc.

10th WADS, volume 4619 of LNCS, pages 434–445. Springer, 2007.

[2] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

[3] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation
of search tree algorithms for hard graph modification problems. Algorithmica,
39(4):321–347, 2004.

[4] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31–45, 2007.

[5] G. Kortsarz, M. Langberg, and Z. Nutov. Approximating maximum subgraphs
without short cycles. In Proc. 11th APPROX, volume 5171 of LNCS, pages
118–131. Springer, 2008.

[6] H. Moser. Problem kernelization for graph packing. In Proc. 35th SOFSEM,
LNCS. Springer, 2009. To appear.

[7] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[8] M. Wahlström. Algorithms, Measures, and Upper Bounds for Satisfiability

and Related Problems. PhD thesis, Department of Computer and Information
Science, Linköpings universitet, Sweden, 2007.

[9] M. Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309,
1981.

	Introduction
	NP-Completeness on Planar Graphs
	Problem Kernelization
	References

