
To appear in Optimization Letters,
http://dx.doi.org/10.1007/s11590-011-0311-5.

Parameterized Computational Complexity of Finding

Small-Diameter Subgraphs⋆

Alexander Schäfer ·

Christian Komusiewicz · Hannes Moser ·

Rolf Niedermeier

the date of receipt and acceptance should be inserted later

Abstract Finding subgraphs of small diameter in undirected graphs has been
seemingly unexplored from a parameterized complexity perspective. We per-
form the first parameterized complexity study on the corresponding NP-hard
s-Club problem. We consider two parameters: the solution size and its dual.

Keywords Clique relaxation · s-club · NP-hard problem · problem kernel ·
polynomial-time preprocessing · branching algorithm

1 Introduction

The search for cohesive subgraphs is an important task in network analysis.
The standard model for a cohesive subgraph is the complete subgraph, called
clique. In many applications, however, the clique requirement is too strict.
To deal with this problem, the application of clique relaxations has been pro-
posed [1, 3, 21]. Cliques are precisely the graphs that have diameter 1. We study
a concept that relaxes this diameter requirement, so-called s-clubs: an s-club
is a graph that has diameter at most s [1]. Hence, 1-clubs are cliques; in this

⋆ The main work for this article was done while all authors were with the Friedrich-
Schiller-Universität Jena.

The results of this article are part of the first author’s diploma thesis [20].

C. K. was supported by a PhD fellowship of the Carl-Zeiss-Stiftung and by the Deutsche
Forschungsgemeinschaft, project PABI, NI 369/7.

H. M. was supported by the Deutsche Forschungsgemeinschaft, project AREG, NI 369/9.

A. Schäfer
Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology,
Stephanstraße 1A, D-04103 Leipzig, Germany, E-mail: aschaefer@cbs.mpg.de

C. Komusiewicz · R. Niedermeier
Institut für Softwaretechnik und Theoretische Informatik, Technische Universität Berlin,
D-10587 Berlin, Germany E-mail: {christian.komusiewicz, rolf.niedermeier}@tu-berlin.de

http://dx.doi.org/10.1007/s11590-011-0311-5

2

work we study s-clubs for s > 1. The s-club concept was defined in the context
of social sciences [1], and it has recently been used in the analysis of social [17]
and biological [19] networks. The task of finding an s-club of order k can be
formalized as follows:

s-Club

Input: An undirected graph G = (V,E) with integer k ≥ 1.
Question: Is there a set of vertices S ⊆ V of size k such that G[S]
has diameter at most s?

s-Club is NP-complete [7], even in graphs of diameter s + 1 [3]. For s ≥ 2,
every graph contains an s-club of order∆(G)+1, where ∆(G) is the maximum
degree of G, namely the graph that is induced by the closed neighborhood of
a vertex with maximum degree. Hence, s-Club is nontrivially posed only
if k > ∆(G) + 1. In contrast, for every constant s ≥ 2, there is no polynomial-
time algorithm for deciding whether a graph G has an s-club of order at
least ∆(G) + 2, unless P=NP [8]. Finding a maximum-cardinality s-club is
inapproximable within a factor of |V |1/3−ǫ, for any ǫ > 0, unless P=NP [16].
For even s, the inapproximability result has been strengthened to a factor
of |V |1/2−ǫ [2]. Integer linear programs [3, 7] as well as heuristics [6] have been
proposed for s-Club. Since 1-Club is equivalent to Clique, it is W[1]-hard
with respect to the parameter solution size [9].

We initiate the study of s-Club for s ≥ 2 within the framework of pa-
rameterized computational complexity [10, 12, 18]. We study two parameters
and their influence on the computational complexity of s-Club: the solution
size k and its dual d := |V | − k, which we refer to as “size of the deletion set”.
For parameter k as well as parameter d we obtain fixed-parameter tractability.
This contrasts the W[1]-completeness of 1-Club or, equivalently, Clique pa-
rameterized by the solution size k. In detail, our results are as follows: for the
parameter k the problem does not admit a polynomial-size many-to-one ker-
nel but a k2-vertex Turing kernel for even s and a k3-vertex kernel for odd s.
This shows the potential and limitations of polynomial-time preprocessing and
contributes to the currently very short list of parameterized problems on gen-
eral graphs for which both nonexistence of a polynomial-size problem kernel
and existence of a polynomial-size Turing kernel are known.1 Furthermore, we
show that s-Club can be solved in O((k − 2)k · k! · k3|V |+ |V ||E|) time by a
branching algorithm. For the dual parameter d, we present a simple branching
algorithm that runs in O(2d · |V ||E|) time.

Preliminaries. We only consider undirected graphs G = (V,E), with vertex
set V and edge set E ⊆ {{u, v} | u, v ∈ V }. Throughout this work, let n :=
|V | and m := |E|. Furthermore, we assume that n = O(m) since we can
remove isolated vertices in linear time from G. The distance d(u, v) between
two vertices u and v is the length of a shortest path between u and v. The
diameter of a graphG is the maximum of all distances between any two vertices

1 To our knowledge, k-Leaf Out-Branching and k-Leaf Out-Tree are so far the only
other problems for which this has been shown [11].

3

u and v of G. The (open) i-neighborhood Ni(v) := {u | 1 ≤ d(u, v) ≤ i} of v is
the set of vertices that have distance at most i to v. The closed i-neighborhood
of v is Ni[v] := Ni(v) ∪ {v}. The exact i-neighborhood N◦

i (v) := {u | d(u, v) =
i} of v is the set of vertices that have distance exactly i to v. For a vertex
set S, we use G[S] to denote the subgraph of G induced by S having edge
set E′ = {{u, v} ∈ E | u, v ∈ S}.

Parameterized complexity [10, 12, 18] is a two-dimensional framework for
studying the computational complexity of problems. One dimension is the
input size n (as in classical complexity theory), and the other one is a param-
eter k. A parameterized problem L is fixed-parameter tractable if there is an
algorithm that decides in f(k) · poly(n) time whether (x, k) ∈ L, where f is a
computable function depending only on k. Data reduction aims at the elimi-
nation of polynomial-time “solvable” parts of the input data, to obtain “hard”
cores [4, 14]. A parameterized problem L admits a (many-to-one) problem ker-
nel if there is a polynomial-time transformation of any instance (I, k) to an
instance (I ′, k′) such that (I, k) ∈ L ⇔ (I ′, k′) ∈ L, |I ′| ≤ g(k), and k′ ≤ k. A
problem kernel is polynomial if g(k) is a polynomial function. While a param-
eterized problem is fixed-parameter tractable if and only if it has a problem
kernel [10], polynomial many-to-one kernels presumably cannot be obtained
for every fixed-parameter tractable problem [5]. An extension of the classical
problem kernel definition are so-called Turing kernels. We use a definition of
Turing kernels given by Lokshtanov [15]. It relies on the notion of t-oracles:
A t-oracle for a parameterized problem L is an “oracle” that takes as input
(I, k) with |I| ≤ t, k ≤ t, and decides (I, k) ∈ L in constant time. A param-
eterized problem L admits a g(k)-size Turing kernel if there is an algorithm
which, given an input (I, k) together with a g(k)-oracle for L, decides whether
(I, k) ∈ L in time polynomial in |I| and k. A Turing kernel is polynomial if g
is a polynomial function.

2 Turing Kernels for the Parameter Solution Size

Using a methodology due to Bodlaender et al. [5], we show that s-Club does
not admit a polynomial (many-to-one) problem kernel. It relies on the notion
of compositional parameterized problems for which there can be no polynomial
problem kernels under some complexity-theoretic assumptions. Afterwards, we
contrast this result by showing a polynomial Turing kernel for s-Club.

Lemma 1 [5, 13] Let L be a compositional parameterized problem whose “un-
parameterized version L̂” is NP-complete. Then, L does not admit a polyno-
mial kernel unless NP ⊆ coNP/poly.

We use the following characterization of compositional graph problems for
showing that s-Club is compositional:

Lemma 2 [5] Let L be a parameterized graph problem such that for any pair
of graphs G1 and G2, and any integer k ∈ N, we have

((G1, k) ∈ L ∨ (G2, k) ∈ L) ⇔ (G1 ⊎G2, k) ∈ L,

4

where G1 ⊎G2 is the disjoint union of G1 and G2. Then L is compositional.

Lemma 3 s-Club is compositional.

Proof In order to apply Lemma 2, we show that (G1, k) or (G2, k) is a yes-
instance ⇔ (G1 ⊎G2, k) is a yes-instance. The “⇒”-direction follows from the
fact that every subgraph of G1 or G2 is also a subgraph of G1⊎G2. The “⇐”-
direction follows from the fact that every s-club is connected and that every
connected subgraph of G1⊎G2 is either a subgraph of G1 or a subgraph of G2.

⊓⊔

By using the facts that s-Club is compositional, that its unparameterized ver-
sion is NP-complete [7], and by applying Lemma 1, we arrive at the following.

Theorem 1 s-Club does not admit a polynomial kernel with respect to the
parameter “solution size” unless NP ⊆ coNP/poly.

Next, we contrast this result by showing a polynomial Turing kernel for s-
Club, s ≥ 2. The following simple observation is the basis for our Turing
kernelization for s-Club:

Observation 1 If a vertex v is part of an s-club S, then only vertices in the
s-neighborhood of v can also be part of S.

The main idea of our Turing kernelization is that either s-Club has an “easy-
to-find” solution or the size of the s-neighborhood of each vertex in G is
bounded from above by a function polynomial in k. The following rule finds
these easy order-k s-clubs of a graph:

Rule 1 If there exists a vertex v ∈ V with |N⌊s/2⌋(v)| ≥ k − 1, then return
“yes”.

Lemma 4 Rule 1 is correct and can be exhaustively performed in O(nm) time.

Proof Let v be a vertex with |N⌊s/2⌋(v)| ≥ k − 1 and let S := N⌊s/2⌋[v]. We
show that G[S] is an s-club, that is, the pairwise distance of any two vertices
x, y ∈ N⌊s/2⌋[v] is at most s. Since x, y ∈ N⌊s/2⌋[v] and by the definition of
N⌊s/2⌋[v], the distance from x to v is at most ⌊s/2⌋ and the distance from v to
y is at most ⌊s/2⌋. Consequently, the distance between x and y is at most s.
This proves the correctness of Rule 1. As to the running time, computing
N⌊s/2⌋[v] can be done in O(m) time for each vertex by breadth-first search.
Overall, Rule 1 thus runs in O(nm) time. ⊓⊔

Obviously, Rule 1 can be modified to output the corresponding s-club as
well. In the following, we describe how to obtain a polynomial Turing ker-
nel. For each vertex v of G, we query the t-oracle for an s-club of order k
within Ns[v]. Due to Observation 1 it is obvious that there exists an s-club
of order k in G if and only if there exists an s-club of order k in one of these
s-neighborhoods. Hence, the Turing kernel is correct. It remains to bound the

5

size of each s-neighborhood by some function g(k). Therefore, we assume in
the following that Rule 1 has been applied and show that this upper-bounds
the s-neighborhood of each vertex v ∈ V . For this we distinguish between even
and odd values of s. First, we show that s-Club admits a k2-vertex Turing
kernel if s is even, then we show that s-Club admits a k3-vertex Turing kernel
if s is odd.

Using the exact i-neighborhoodN◦
i (v), we observe that Ns[v] is expressible

by the union of two sets:

Lemma 5 When s is even, Ns[v] = Ns/2[v] ∪ Ns/2(N
◦
s/2(v)).

Proof Lemma 5 can be seen as follows. By definition, any vertex that has
distance at most s/2 from v is in Ns/2[v]. Any vertex x with s/2 ≤ d(v, x) ≤ s
has distance at most s/2 to at least one vertex in N◦

s/2(v) and thus belongs to

Ns/2(N
◦
s/2(v)). ⊓⊔

Using Lemma 5, we show the following.

Theorem 2 For even s, s-Club admits a k2-vertex Turing kernel, which can
be computed in O(nm) time.

Proof The Turing kernelization consists of applying Rule 1, and then creating
for each v ∈ V a graph that is induced by Ns[v]. The running time follows
from Lemma 4 and the fact that for each v ∈ V the graph induced by Ns[v]
can be constructed in O(m) time, by first applying breadth-first search to
obtain Ns[v] and then adding the edges of G with both of endpoints in Ns[v].

It remains to bound the number of vertices in Ns[v]. Using Lemma 5,
this can be done by bounding the sizes of Ns/2[v] and Ns/2(N

◦
s/2(v)). After

Rule 1 has been applied, Ns/2[v] contains at most k vertices, as illustrated in
Figure 1(a). The size of N◦

s/2(v) is thus also at most k − 1. Furthermore, for

each vertex w ∈ N◦
s/2(v), the size of Ns/2(w) is also upper-bounded by k−1, as

illustrated in Figure 1(b). Thus, the size ofNs/2(N
◦
s/2(v)) is at most k2−2k+1.

Hence, the size of Ns/2[v] ∪ Ns/2(N
◦
s/2(v)) is at most k + k2 − 2k + 1 ≤ k2.

By Lemma 5, |Ns[v]| ≤ k2 follows. ⊓⊔

For odd s, the argumentation is different: instead of bounding the size
of two subsets of Ns[v], we now bound the size of three subsets. We denote
N⌊s/2⌋ by N(s−1)/2 in the following; this is equivalent since s is odd. Using the
(s− 1)/2-neighborhood, we can express Ns[v] by the union of three sets:

Lemma 6 Ns[v] ⊆ N(s−1)/2[v] ∪N(s−1)/2(N
◦
(s−1)/2(v)) ∪N(s−1)/2(N

◦
s−1(v)).

Proof By definition, any vertex with distance at most (s − 1)/2 to v is in
N(s−1)/2[v]. Any vertex y with (s − 1)/2 ≤ d(v, y) ≤ s − 1 has distance at
most (s − 1)/2 to at least one vertex in N◦

(s−1)/2(v) and thus belongs to

N(s−1)/2(N
◦
(s−1)/2(v)). Any vertex z with s − 1 ≤ d(v, z) ≤ 3(s − 1)/2 has

distance at most (s− 1)/2 to at least one vertex in N◦
s−1(v) and thus belongs

to N(s−1)/2(N
◦
s−1(v)). Since 3(s − 1)/2 = 1.5s − 1.5 ≥ s for s ≥ 3, we have

considered all vertices in Ns[v], and the claim follows. ⊓⊔

6

w1

w2

w3

v

s/2s/2

s/2

Ns/2[v]

Ns[v]

(a) Rule 1 bounds the s/2-neighborhood
of a vertex v to at most k − 1 vertices.

w1

w2

w3

v

s/2s/2

Ns/2[v]

Ns[v]

Ns/2[w1]

(b) Rule 1 bounds the s/2-neighborhood
of a vertex w1 ∈ N◦

s/2
(v) to at most k−1

vertices.

Fig. 1 Turing kernelization via Rule 1 for s-Club with even s.

Using Lemma 6, we show the following.

Theorem 3 For odd s ≥ 3, s-Club admits a k3-vertex Turing kernel, which
can be computed in O(nm) time.

Proof The kernelization and its running time analysis are completely anal-
ogous to Theorem 2. Hence, we only bound the size of Ns[v] to show the
kernel size by upper-bounding the number of vertices in each of the three sets
N(s−1)/2[v], N(s−1)/2(N

◦
(s−1)/2(v)) and N(s−1)/2(N

◦
s−1(v)).

After application of Rule 1, the closed (s − 1)/2-neighborhood of v con-
sists of at most k vertices. Hence, |N◦

(s−1)/2(v)| ≤ k − 1. For each vertex

w ∈ N◦
(s−1)/2(v) the size of N(s−1)/2(w) is at most k − 1. Thus, the size of

N(s−1)/2(N
◦
(s−1)/2(v)) is at most k2−2k+1. Therefore, also the size of N◦

s−1(v)

is at most k2 − 2k + 1. For each vertex x ∈ N◦
s−1(v) we have |N(s−1)/2(x)| ≤

k − 1. Thus the size of N(s−1)/2(N
◦
s−1(v)) is at most k3 − 3k2 + 3k − 1. By

Claim 6, the kernel thus contains at most k+k2−2k+1+k3−3k2+3k−1 ≤ k3

vertices. ⊓⊔

3 Two Branching Algorithms

We present two branching algorithms for s-Club. First, we present an algo-
rithm for the parameter solution size k. The main idea of this algorithm is to
test for each v ∈ V whether there is an s-club that contains v. This is done by
considering {v} as “seed” of an s-club and then branching into all possibilities
to extend it. This branching is performed recursively until the considered set
has size k. For a size-k set S, we then check whether G[S] is an s-club. The

7

Algorithm: Branch-s-club (G,S,k)
Input: A graph G, a set S, an integer k
Output: An order-k s-club S′ such that S′ ⊇ S if such an s-club exists.

1 if |S| < k then

2 for each u ∈ S
3 for each w ∈ {N1(u)\S}
4 call Branch-s-club(G,S ∪ {w},k)
5 else

6 if G[S] is an s-club then output S

Fig. 2 Pseudo-code of the branching algorithm for parameter solution size k.

pseudo-code of the branching algorithm Branch-s-club is presented in Figure 2.
Next, we show that a call to Branch-s-club(S,G, k) returns an order-k s-club
that comprises S if such an s-club exists.

Lemma 7 The algorithm Branch-s-club given in Figure 2 is correct.

Proof First, the size of the set S is checked. If |S| < k, then at least one
vertex needs to be added in order to obtain an order-k s-club. Furthermore,
since we can assume that the s-club is connected, we must add a vertex that
is a neighbor of some vertex u ∈ S. Hence, we branch first into all possible
choices for u (Line 2), then we branch into all possible choices for adding a
neighbor w /∈ S of u (Line 3). For each choice of w, we recursively call the
algorithm with S ∪ {w} (Line 4).

If S = k, then we test in Line 6 whether S is an s-club. If this is the case,
then we output S. Clearly, all connected size-k vertex sets that contain S will
be checked whether they form an s-club. ⊓⊔

In general, the algorithm Branch-s-club does not yield fixed-parameter tract-
ability for parameter k since in Line 3 it branches into an unbounded number
of cases. The number of choices is bounded, however, when the algorithm runs
on a graph to which Rule 1 has been applied.

Theorem 4 s-Club, s ≥ 2, can be solved in O((k − 2)k · k! · kn+ nm) time.

Proof The algorithm works as follows: First, apply Rule 1 to the input graphG.
If Rule 1 does not return a trivial s-club, call Branch-s-club for each v ∈ V .
The correctness of this approach follows from Lemma 7. It remains to bound
the running time of this algorithm.

The exhaustive application of Rule 1 takes O(nm) time. Then, Branch-s-
club is called for each v ∈ V . For each v, the number of recursive calls can be
upper-bounded as follows. The algorithm branches into all possibilities to add
a neighbor of a vertex in S. In the first branching step, that is, when S = {v},
there are k − 1 possible choices after application of Rule 1. When |S| > 1,
we consider the neighbors of each vertex in S. Since each vertex of S has at
most k− 1 neighbors and at least one neighbor in S, the number of vertices to

8

consider is at most k − 2. Hence, the number of recursive calls is |S| · (k − 2).
Branching is performed as long as |S| ≤ k−1. The overall number of recursive
calls thus is

(k − 1) · 2 · (k − 2) · ... · (k − 1) · (k − 2) < (k − 1)! · (k − 2)k−1.

Testing whether S is an s-club takes O(k3) time using breadth-first search
from each vertex in S. Overall, we need O(nm) time for Rule 1, then we make
n calls to a function which calls itself up to (k − 2)k−1 · (k − 1)! times, and
additionally tests the at most (k− 2)k−1 · (k− 1)! resulting sets in O(k3) time.
The overall running time bound follows. ⊓⊔

Finally, we describe a simple fixed-parameter algorithm for the dual parame-
ter d := n−k. The idea is to branch on vertices that have distance at least s+1:
at least one of them is not part of the solution.

Theorem 5 s-Club can be solved in O(2d · nm) time, where d := n− k.

Proof The search tree strategy proceeds as follows: Search for a pair of vertices
u and v with d(u, v) ≥ s+ 1. If no such pair exists, then the graph is already
an s-club and no further vertices need to be deleted. The search for these pairs
takes O(nm) running time using breadth-first search starting from each of the
n vertices in the graph. Since u and v have too high distance from each other,
at least one of them has to be deleted. Hence, branch into the two subcases of
deleting either u or v and set d := d− 1. Branching stops if d = 0 or an s-club
has been found. Hence, the size of the search tree is at most 2d. ⊓⊔

4 Conclusion

We conclude with several open questions. First, concerning the parameter so-
lution size k, is there a linear Turing kernel and is there an algorithm with
running time ck ·poly(n) for constant c? Second, concerning the dual parame-
ter d, is there a polynomial kernel for this parameter and can the exponential
part of the running time be improved to o(2d)? Finally, many questions arise
concerning the complexity of s-Club in special graph classes. For example, the
problem can be formulated in monadic second-order logic [20] leading to several
tractability results. For instance, s-Club is fixed-parameter tractable param-
eterized by the treewidth of the input graph and fixed-parameter tractable
parameterized by s in case the input graph is planar [20]. What is the running
time of direct combinatorial algorithms for these special cases?

References

1. R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal
of Mathematical Sociology, 3:3–113, 1973.

9

2. Y. Asahiro, E. Miyano, and K. Samizo. Approximating maximum
diameter-bounded subgraphs. In Proceedings of the 9th Latin American
Theoretical Informatics Symposium (LATIN’10), volume 6034 of Lecture
Notes in Computer Science, pages 615–626. Springer, 2010.

3. B. Balasundaram, S. Butenko, and S. Trukhanov. Novel approaches for
analyzing biological networks. Journal of Combinatorial Optimization,
10(1):23–39, 2005.

4. H. L. Bodlaender. Kernelization: New upper and lower bound techniques.
In Proceedings of the 4th International Workshop on Parameterized and
Exact Computation (IWPEC’09), volume 5917 of Lecture Notes in Com-
puter Science, pages 17–37. Springer, 2009.

5. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On
problems without polynomial kernels. Journal of Computer and System
Sciences, 75(8):423–434, 2009.

6. J. Bourjolly, G. Laporte, and G. Pesant. Heuristics for finding k-clubs in
an undirected graph. Computers and Operations Research, 27(6):559–569,
2000.

7. J. Bourjolly, G. Laporte, and G. Pesant. An exact algorithm for the
maximum k-club problem in an undirected graph. European Journal of
Operational Research, 138(1):21–28, 2002.

8. S. Butenko and O. Prokopyev. On k-club and k-clique numbers in graphs.
Technical report, Texas A and M University, 2007.

9. R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness II: On completeness for W[1]. Theoretical Computer Science,
141(1&2):109–131, 1995.

10. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

11. H. Fernau, F. V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Vil-
langer. Kernel(s) for problems with no kernel: On out-trees with many
leaves. In Proceedings of the 26th International Symposium on Theoreti-
cal Aspects of Computer Science (STACS’09), volume 3 of LIPIcs, pages
421–432. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany,
2009.

12. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
13. L. Fortnow and R. Santhanam. Infeasibility of instance compression and

succinct pcps for np. Journal of Computer and System Sciences, 77(1):91–
106, 2011.

14. J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. ACM SIGACT News, 38(1):31–45, 2007.

15. D. Lokshtanov. New Methods in Parameterized Algorithms and Complex-
ity. PhD thesis, Universitetet i Bergen, Bergen, Norway, 2009.

16. J. Marincek and B. Mohar. On approximating the maximum diameter
ratio of graphs. Discrete Mathematics, 244(1-3):323–330, 2002.

17. N. Memon, K. C. Kristoffersen, D. L. Hicks, and H. L. Larsen. Detecting
critical regions in covert networks: A case study of 9/11 terrorists network.
In Proceedings of the 2nd International Conference on Availability, Reli-

10

ability and Security (ARES’07), pages 861–870. IEEE Computer Society,
2007.

18. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31
in Oxford Lecture Series in Mathematics and Its Applications. Oxford
University Press, 2006.

19. S. Pasupuleti. Detection of protein complexes in protein interaction net-
works using n-clubs. In Proceedings of the 6th European Conference on
Evolutionary Computation, Machine Learning and Data Mining in Bioin-
formatics (EvoBIO’08), volume 4973 of LNCS, pages 153–164. Springer,
2008.

20. A. Schäfer. Exact algorithms for s-club finding and related problems, 2009.
Diploma Thesis, Friedrich-Schiller-Universität Jena.

21. S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the
clique concept. Journal of Mathematical Sociology, 6:139–154, 1978.

	Introduction
	Turing Kernels for the Parameter Solution Size
	Two Branching Algorithms
	Conclusion

