
Parameterized Complexity of Finding Regular

Induced Subgraphs1

Hannes Moser a,2 Dimitrios M. Thilikos b,3

aInstitut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, D-07743 Jena, Germany

bDepartment of Mathematics, National and Capodistrian University of Athens

Panepistimioupolis, GR-15784, Athens, Greece.

Abstract

The r-Regular Induced Subgraph problem asks, given a graph G and a non-
negative integer k, whether G contains an r-regular induced subgraph of size at
least k, that is, an induced subgraph in which every vertex has degree exactly r.
In this paper we examine its parameterization k-Size r-Regular Induced Sub-

graph with k as parameter and prove that it is W [1]-hard. We also examine the pa-
rameterized complexity of the dual parameterized problem, namely, the k-Almost

r-Regular Graph problem, which asks for a given graph G and a non-negative
integer k whether G can be made r-regular by deleting at most k vertices. For this
problem, we prove the existence of a problem kernel of size O(kr(r + k)2).

1 Introduction

Regular graphs as well as regular subgraphs have been intensively studied from
a structural point of view (e.g., [1]). An interesting problem related to regular
graphs is to decide whether a given graph contains a regular subgraph. One
of the first problems of this kind was stated by Garey and Johnson: Cubic

Email addresses: moser@minet.uni-jena.de (Hannes Moser),
sedthilk@math.uoa.gr (Dimitrios M. Thilikos).
1 A preliminary version of this paper appeared in the Proceedings of the 2nd Algo-
rithms and Complexity in Durham (ACiD’06), Durham, England, September 2006,
Volume 7 in Texts in Algorithmics, pages 107–118, College Publications.
2 Supported by the EC Research Training Network HPRN-CT-2002-00278 (COMB-
STRU) and by the Deutsche Forschungsgemeinschaft, project ITKO, NI 369/5.
3 Supported by the Spanish CICYT project TIN-2004-07925 (GRAMMARS).

Preprint submitted to Elsevier 13 August 2008

Subgraph, that is, the problem of deciding whether a given graph contains
a 3-regular subgraph, is NP-complete [11]. This result was later expanded
in [22], where it was shown that Cubic Subgraph is NP-complete on planar
graphs with maximum degree 7. Moreover, it was shown by Stewart that
Cubic Subgraph is also NP-complete on bipartite graphs with maximum
degree 4 [24]. The same author showed that the more general problem of
deciding whether a given graph contains an r-regular subgraph for any fixed
degree r > 3 is NP-complete on general graphs as well as on planar graphs [23]
(where in the latter case only r = 4 and r = 5 were considered, since any
planar graph contains a vertex of degree at most 5). Note that this problem
is polynomial-time solvable for r ≤ 2 [5].

We consider a variant of this problem, where we ask whether a given graph G
contains an induced subgraph of at least k vertices that is r-regular, and we
call it r-regular induced subgraph for any r ≥ 0. The exact version of
this problem is obtained if we ask for an induced subgraph of size exactly k
(for the difference between the original and the exact version of the problem,
see Figure 1). In this paper, we examine the following dual parameterizations
of the exact version of the problem.

(1) k-Almost r-Regular Graph:
Input: A graph G = (V, E) and an integer k.
Parameter: k.
Question: Is there a vertex subset S ⊆ V of size exactly k such that

G[V \ S], that is, the graph induced by V \ S, is r-regular?
(2) k-Size r-Regular Induced Subgraph

Input: A graph G = (V, E) and an integer k.
Parameter: k.
Question: Is there a vertex subset S ⊆ V of size exactly k such that G[S],

that is, the graph induced by S, is r-regular?

The non-exact version of the k-Almost r-Regular Graph problem asks
for a set S of size at most k and is denoted as 6 k-Almost r-Regular

Graph. Similarly, the non-exact version of the k-Size r-Regular Induced

Subgraph problem asks for a set S of size at least k and is denoted as > k-
Size r-Regular Induced Subgraph.

The r-Regular Induced Subgraph problem belongs to the general cate-
gory of subgraph problems, i.e., problems that ask for the existence of an (in-
duced) subgraph with a certain property (e.g., being r-regular). Most problems
of this type concern hereditary properties (a property is hereditary if it holds
for any induced subgraph of G whenever it holds for G) and can be classified as
NP-hard [16,25]. Basically all such problems, when parameterized by the num-
ber of vertices that need to be removed in order to obtain the desired property,
admit fixed-parameter algorithms provided that the corresponding property is

2

G

Fig. 1. For 3-Regular Induced Subgraph, the instance (G, k) is a yes-instance
iff k ∈ {0, 1, . . . , 17, 18}. However, for its “exact version”, the same instance is a
yes-instance iff k ∈ {4, 8, 12, 16, 18}.

hereditary [2,15]. For related results, we refer to [17], [10,21], and [4,6,13] where
the imposed property is chordality, 2-colorability, and acyclicity, respectively.

Notice that r-regularity is not a hereditary property as subgraphs of r-regular
graphs are generally not r-regular, for r ≥ 1. This suggests that the existing
results do not help to prove W [1]-hardness or fixed-parameter intractability for
the problems we consider in this paper. Moreover, the lack of heredity makes it
harder to design fixed-parameter algorithms. Another vertex removal problem
with a non-hereditary property was examined in [7] where it is shown that the
problem of converting a given graph into a grid by vertex/edge removals and
additions is fixed-parameter tractable.

Since r-regularity is not a hereditary property it makes sense to consider the
different exact and non-exact versions of the problems above (see Figure 1).
As the non-exact versions of the problems are weaker than (can be reduced
to) their exact counterparts, we will prove all of our hardness results for the
above weaker setting. However, in order to obtain a stronger statement, all
algorithms in this paper are designed for the “exact” versions of our problems
(modifications for solving the original versions are easy and have the same
running times).

Note that for r = 0, r-Regular Induced Subgraph is equivalent to Inde-

pendent Set. In this paper, we show that r-Regular Induced Subgraph

is NP-complete for r ≥ 1 even if we restrict the input of the problem to planar
graphs or triangle-free planar graphs (for planar graphs, we consider r ≤ 5
and for triangle-free planar graphs we consider r ≤ 3) 4 . Our reduction also
implies that > k-Size r-Regular Induced Subgraph is W [1]-hard for
any r ≥ 0 on general graphs, suggesting that no fixed-parameter algorithm
exists for this parameterized problem (and therefore, neither for its exact
counterpart). However, the exact version of the dual problem, k-Almost r-
Regular Graph, is easier. We design a fixed-parameter algorithm running
in O(n(k + r) + kr2(k + r)2 · (r + 2)k) steps, where n is the number of ver-
tices of the input graph. Our algorithm is based on a search tree algorithm

4 This restriction follows from Euler’s formula.

3

and the existence of a reduction of k-Almost r-Regular Graph to a prob-
lem kernel of size O(kr(k + r)2) (in the special case where r = 1, this size
can be improved to O(k2)). We stress that this positive result only holds for
constant r, it has been shown very recently by Mathieson and Szeider that
6 k-Almost r-Regular Graph becomes W [1]-hard if r is part of the in-
put [18]. The authors also consider a weighed variant of the problem, where
the desired degree can be specified for each vertex separately, and they also
consider the operations edge addition and/or edge deletion and show several
hardness and fixed-parameter tractability results for these variants [18,19].

The remaining document is organized as follows: First, we shortly introduce
necessary definitions from parameterized complexity theory and graph theory
in Section 2. Section 3 is dedicated to hardness results. In Sections 4 and 5
we present the problem kernel and the exact algorithm for k-Almost r-
Regular Graph, respectively.

2 Preliminaries

In this paper we deal with fixed-parameter algorithms that emerge from the
field of parameterized complexity analysis [8,20], where the computation com-
plexity of a problem is analyzed in a two-dimensional framework. One dimen-
sion of an instance of a parameterized problem is the input size n, and the
other the parameter k. A parameterized problem is fixed-parameter tractable
if it can be solved in f(k) · nO(1) time, where f is a computable function de-
pending only on the parameter k, not on the input size |I|. One of the common
methods to prove that a problem is fixed-parameter tractable is to provide data
reduction rules that lead to a problem kernel : Given a problem instance (I, k),
a data reduction rule replaces that instance by a another instance (I ′, k′) in
polynomial (with respect of the size of the input) time, such that (I, k) is a
yes-instance iff (I ′, k′) is a yes-instance. An instance to which none of a given
set of reduction rules applies is called reduced with respect to the rules. A
parameterized problem is said to have a problem kernel if, after the applica-
tion of the reduction rules, the resulting reduced instance has size f(k) for a
function f depending only on k. For more about problem kernelization, we
refer to a recent survey by Guo and Niedermeier [14]. Analogously to classical
complexity theory, Downey and Fellows [8] developed a framework providing
a reducibility and completeness program. A parameterized reduction from a
parameterized language L to another parameterized language L′ is a function
that, given an instance (I, k), returns in time f(k) · nO(1) an instance (I ′, k′)
(with k′ depending only on k) such that (I, k) ∈ L⇔ (I ′, k′) ∈ L′. The basic
complexity class for fixed-parameter intractability is W [1] as there is good rea-
son to believe that W [1]-hard problems are not fixed-parameter tractable [8].

4

In this paper we assume that all graphs are simple and undirected. For a
graph G = (V, E) we write V (G) to denote its vertex set and E(G) to denote
its edge set. By default, we use n to denote the number of vertices of a given
graph. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph of G induced
by V ′. We write G \ V ′ to denote the graph G[V \ V ′]. If v ∈ V we also
write G − v instead of G \ {v}. The (open) neighborhood N(V ′) of a given
set V ′ ⊆ V is the set of all vertices in V \V ′ adjacent to some vertex in V ′. We
sometimes write NG(V ′) to emphasize that we refer to the open neighborhood
of V ′ within the graph G. We write Kr to denote the complete graph with r
vertices.

Given a graph G = (V, E) and an edge subset E ′ ⊆ E, to subdivide the
edges E ′ in G means to remove in G all edges in E ′, and then to add for each
edge {u, v} ∈ E ′ a vertex xu,v, making it adjacent to u and v. The vertices
in {xu,v | {u, v} ∈ E ′} are called subdivision vertices.

In the next section, we show that 6 k-Almost r-Regular Graph as well
as > k-Size r-Regular Induced Subgraph are NP-complete. Moreover,
we show that the latter problem is also W [1]-hard.

3 Hardness and Completeness Results

In this section we first prove that r-Regular Induced Subgraph is NP-
complete by giving a polynomial-time reduction from Vertex Cover. A sim-
ilar independent result has recently appeared in [3] proving the NP-hardness
of finding an induced r-regular bipartite graph.

Theorem 1 The r-Regular Induced Subgraph problem is NP-complete
for any r ≥ 0. It also remains NP-complete when restricted to planar graphs
(for r ≤ 5) or to triangle-free planar graphs (for r ≤ 3).

Proof. We first prove the theorem in its general statement and then we explain
how to modify the proof for its planar versions. For the proof we use 6 k-
Almost r-Regular Graph, that is, we search for a vertex subset S of size
at most k such that G\S is r-regular. This problem is polynomially equivalent
to r-Regular Induced Subgraph. For r = 0, 6 k-Almost r-Regular

Graph is identical to Vertex Cover, which is known to be NP-complete.
For all remaining r > 0 we give a reduction from Vertex Cover.

Let (G, k) be an instance of Vertex Cover. We construct an instance (G′, k′)
of 6 k-Almost r-Regular Graph with r > 0 as follows: First, we set G′ := G
and k′ := k · (r + 1). For each vertex v ∈ V (G) we add a copy of Kr+1 to G′.
Let Rv be the copy corresponding to vertex v. For all vertices v ∈ V (G) we

5

Fig. 2. Example of a graph G (left) and the corresponding graph G′ (right)
with r = 2. Vertices in the solution are gray, the remaining vertices which are
not removed are black.

identify v with an arbitrary vertex in Rv, that is, we set v = w for some
arbitrary w ∈ V (Rv). Figure 2 gives an example of a graph G and the corre-
sponding graph G′.

We have to show that (G, k) with r = 0 is a yes-instance iff (G′, k′) with r > 0
is a yes-instance.

(⇒): Suppose that there is a size-k solution S for (G, k), that is, G\S consists
of isolated vertices. We define a new solution set S ′ :=

⋃
v∈S V (Rv) of size k ·

(r +1) for G′. Clearly, G′ \ S ′ is a graph in which every connected component
is an Rv, i.e., G′ \ S ′ is an r-regular graph, thus S ′ is a solution for (G′, k′).

(⇐): Suppose that there is a size-k′ solution S ′ for (G′, k′). We say that S ′ is
clustered if

∀v ∈ V (G) : Rv ∩ S ′ 6= ∅ ⇒ Rv ⊆ S ′,

and notice that if S ′ is clustered then S := {v ∈ V (G) | Rv ∩ S ′ 6= ∅} is
a solution for the instance (G, k) of Vertex Cover. In the case that the
solution S ′ is not clustered, we can turn it into a clustered one according to
the following claim, which completes the proof of correctness of the reduction.

Claim: Given a solution S ′ for (G′, k′) where |S ′| ≤ k′, we can always con-
struct a clustered solution S ′′ for the same problem instance.

Proof of claim: We first show that G′ \ S ′ is an r-regular graph in which
each connected component is either a Rv or an r-regular subgraph containing
vertices exclusively from G. Recall that G′ \ S ′ is r-regular. If v ∈ S ′ for
some v ∈ G, then we know that Rv ⊆ S ′, as otherwise some vertices in Rv

would have degree smaller than r in G′ \ S ′. The same argument shows that
if v 6∈ S ′, then either Rv ∩ S ′ = ∅ or (Rv − v) ⊆ S ′. The first case implies that
every neighbor w of v in G is in the solution S ′ (and therefore Rw likewise),
since otherwise v would have a degree greater than r in G′ \ S ′. The second
case implies that r neighbors of v in G must not be in the solution S ′, since
otherwise v would have a degree smaller than r in G \ S ′.

6

With these observations we can prove the claim as follows. Assume that G′\S ′

contains some connected components which are subgraphs consisting only of
vertices from G. Let A be the set of vertices of all such connected components
of G′\S ′. As G′[A] is an r-regular graph, it will contain an independent set I of

size at least ⌈ |A|
r+1
⌉ (I is constructed by greedily picking vertices and removing

their neighbors). We set S ′′ = (S ′∪ (A\ I))\{Rv | v ∈ I} and we observe that
G′ \ S ′′ is also an r-regular graph where each connected component is a Rv.
To show that S ′′ is a solution for (G′, k′) it remains to prove that |S ′′| ≤ k.

Observe that the above modification added at most |A|−⌈ |A|
r+1
⌉ vertices in the

solution and removed at least r · ⌈ |A|
r+1
⌉ vertices in it. Using the tautological

relation |A|
1+r
≤ ⌈ |A|

1+r
⌉, which can be rewritten as |A| − ⌈ |A|

r+1
⌉ − r · ⌈ |A|

r+1
⌉ ≤ 0,

we get |S ′′| − |S ′| ≤ |A| − ⌈ |A|
r+1
⌉ − r · ⌈ |A|

r+1
⌉ ≤ 0. Hence |S ′′| ≤ |S ′| ≤ k, and

this completes the proof of the claim.

Vertex Cover remains NP-complete when restricted to triangle-free planar
graphs [12]. Therefore, the above proof also implies that r-Regular Induced

Subgraph remains NP-complete even when we restrict it to planar graphs
for r ≤ 5. The only modification is that, for the cases where r = 4 or r = 5,
we attach to G a graph corresponding to an octahedron or an icosahedron
instead of K5 or K6, respectively. Moreover, the same reduction implies also
the NP-completeness for triangle-free planar graphs for r ≤ 3 when, in the
case r = 3, we replace K4 by the cube. 2

It is known that the parameterized version of Independent Set (the dual
problem of Vertex Cover), where the parameter is the size of the inde-
pendent set, is W [1]-hard [9]. The reduction in the above proof can be used
to show the W [1]-hardness of > k-Size r-regular induced subgraph as
follows. Let (G, k) be an instance of Independent Set. It can be regarded
as an instance (G, n− k) of Vertex Cover. This instance is reduced to an
instance (G′, (n− k)(r + 1)) of 6 k-Almost r-Regular Graph, which can
be regarded as an instance (G′, n(r − 1)− (n− k)(r + 1)) = (G′, k(r + 1)) of
> k-size r-regular induced subgraph. Clearly, this is a parameterized
reduction, as all these steps can be performed in time f(k) · nO(1), and the
parameter k′ = k(r + 1) is only depending on k. We arrive at the following
theorem.

Theorem 2 ≥k-Size r-regular induced subgraph is W [1]-hard.

4 A Problem Kernel

A central ingredient for the problem kernel is the notion of a clean region.

7

C2

C3

C1

b7

b8

b2

b1

b3

b4 b5

b9

b6

Fig. 3. Example of a graph with clean regions C1, C2, and C3 (white vertices, r = 3).
The dotted edges denote the connected subgraph each clean region induces. Dirty
vertices are gray or black, boundary vertices are gray and all other dirty ver-
tices are black. The boundary for C1 is B1 = {b1, b2, b3}, the boundary for C2

is B2 = {b1, b2, b4, b6, b8}, and the boundary for C3 is B3 = {b5, b7, b9}. Note that
boundaries can have vertices in common, for instance, B1 ∩B2 6= ∅.

Definition 1 We call a vertex of G clean if it has degree r, and dirty other-
wise. We define a clean region in G as a maximal subset of clean vertices that
induces a connected subgraph in G.

Let {Ci : i ∈ I} be the set of all clean regions. The open neighborhood of each
clean region Ci is called its boundary Bi (notice that two different boundaries
may share common vertices). A clean region Ci is called isolated if Bi = ∅. Ob-
serve that the neighborhood of a non-isolated clean region consists entirely of
dirty vertices. See Figure 3 for examples of clean regions and their boundaries.
The detection of all clean regions in G can be done in O(nr) steps.

The main result of this section is the following.

Theorem 3 The k-Almost r-Regular Graph problem, for r ≥ 1, has a
kernel with O(kr(k + r)2) vertices, which can be constructed in O(n · (k + r))
time.

Proof. The idea of our kernelization is to apply a series of reduction steps
to the input instance that either give a negative answer or produce a new
equivalent instance satisfying a bigger subset of the following properties.

(1) All vertices in G have degree at least r and at most k + r,
(2) each vertex of a boundary Bi has at most r clean neighbors in Ci,
(3) the isolated clean regions of G contain in total at most k2 vertices,
(4) for every clean region Ci with boundary Bi,

|Ci| ≤ (r + 1) · (1 + max{⌈
k + 1

r + 1
⌉, |Bi|}).

8

Then we will prove that if all the above properties hold for an instance of
k-Almost r-Regular Graph, then the size of the instance is the claimed
one. For our presentation, we will use (Kr, 1) as the no-instance of k-Almost

r-Regular Graph for r ≥ 0. We also suppose that the graph is stored using
adjacency lists. We proceed with the first reduction step.

Step 1:

1. While k ≥ 0 and ∃v∈V (G) (degG(v) < r) ∨ (degG(v) > k + r):
(G, k)← (G \ {v}, k − 1).

2. If k ≥ 0, then return (G, k), otherwise, return (Kr, 1).

Consider an instance (G, k) of k-Almost r-Regular Graph. Vertices v
in G with deg(v) < r obviously must be contained in the solution S. Likewise,
vertices v with degree deg(v) > k + r must be in S, as we would have to put
more than k of its neighbors into S to achieve degree r for v. We conclude
that Step 1 produces an equivalent instance satisfying property (1).

For the next step, observe that taking a vertex of a clean region into the solu-
tion S causes its clean neighbors to have a degree less than r in G \ S, forcing
them into the solution as well. By applying the same argument inductively
to the clean neighbors, we can see that either no vertex of a clean region is a
part of the solution S, or the entire clean region is contained in S.

We now briefly comment on the data structure supporting the implementation
of the first step. First of all, we may assume from the beginning that |E(G)| ≤
n(k + r)), otherwise G contains a subgraph of minimum degree > k + r and
in this case we know in advance that the input graph is a no-instance. We
construct an auxiliary data structure as follows. We create an array A of
length n with entries from 0 to n − 1, where each entry i points to a linked
list Li. The entries of Li correspond to the vertices of G that have degree i
in G and contain pointers to these vertices in the adjacency list structure.
Also each vertex v in the adjacency list structure points back to the entry
of Ldeg(v) that points to it. This structure can be built on the top of the
adjacency list structure in O(|E(G)|) = O(n(k + r)) time. It is now easy to
verify that, using this enhanced data structure, Step 1 can be implemented
in O(|E(G)|) = O(n(k + r)) time.

Step 2:

1. While k ≥ 0 and G contains a clean region Ci whose boundary Bi

contains a vertex with more than r clean neighbors in Ci:
(G, k)← (G \ Ci, k − |Ci|).

2. If k ≥ 0 then return (G, k), otherwise, return (Kr, 1).

To justify Step 2, assume that a solution S of size exactly k exists, that
is, G \ S is r-regular. Notice that all vertices in NG(S) are dirty. Therefore, a
clean region will be a subset of either S or V (G) \ (S ∪NG(S)).

9

We show that if there is a vertex v ∈ Bi with |N(v)∩Ci| > r, then Ci is a subset
of S. To this end, suppose that there exists a vertex v ∈ Bi with |N(v)∩Ci| > r
and Ci ∩ S = ∅. Thus, v must be in S, which yields a contradiction as then
at least one vertex of Ci does not have degree r in G \ S. Therefore Ci ⊆ S
and thus Step 2 produces an equivalent instance for k-Almost r-Regular

Graph, satisfying properties (1) and (2). Using the same data structure as in
the previous step, this step requires O(r · n).

We now comment on the implementation of Step 2. First, we find all clean
regions by a modified breadth-first search in O(r · n) time. The clean regions
are stored as linked lists. For each clean region, we go through all vertices and
their adjacency lists and, by maintaining a counter for each vertex, we count
for every dirty vertex in the boundary how many neighbors there are in this
clean region. This takes O(r ·n) time for all clean regions. If in this process we
find a dirty vertex whose counter exceeds r, then we remove the corresponding
clean region. This takes O(r · k) time in total (since we can remove at most k
vertices, each having degree r). Therefore, the total running time of Step 2

is dominated by O(r · n).

Our observation that either no vertex of a clean region or the entire clean
region is contained in the solution implies that isolated clean regions that
contain more than k vertices cannot be part of the solution. This leads to the
next reduction step. Recall that we are solving the exact version of k-Almost

r-Regular Graph, that is, we are demanding for a solution of size exactly k.
For this reason, we cannot just delete every isolated clean region in the graph.

Step 3:

1. While G contains an isolated clean region Ci where |Ci| ≥ k + 1:
(G, k)← (G \ Ci, k).

2. For i = r + 1, . . . , k do:
If G contains s isolated clean regions of i vertices, then modify G by
removing max{0, s− ⌊k/i⌋} of them.

Concerning the second part of this step, observe that if there are more than ⌊k/i⌋
isolated clean regions of equal size i, then we can remove all but ⌊k/i⌋ of them.
Considering all possible sizes (at most k), we can conclude that there are at
most

k∑

i=1

⌊k/i⌋ · i ≤
k∑

i=1

k = k2

vertices in isolated clean regions. Therefore, Step 3 produces an equivalent
instance for k-Almost r-Regular Graph, satisfying properties (1)–(3).

As in Step 2, we can find all isolated clean regions by a modified breadth-first
search in O(r · n) time. Build an array of length k − r with entries from r + 1
to k, where entry i points to a (linked) list of all clean regions containing i

10

vertices. With the help of this array, it is easy to find (in O(k) time) and
remove (in O(r ·n) time) all clean regions that have to be removed due to the
reduction rule of Step 3. Thus O(r · n) dominates the running time required
for this step.

The idea for the next reduction step is to replace big non-isolated clean regions
that contain more than k vertices by smaller ones, which have a size bounded
by a function of k, but contain still more than k vertices in order to get
an equivalent problem instance. In this process, the degree of the vertices in
the boundary of the corresponding clean regions must not change. For r =
1 this step does not apply, as then each non-isolated clean region contains
exactly one vertex. For r = 2, the task is essentially just to replace long
paths by shorter ones, which can be easily dealt with (we do that later in the
description of the forth reduction step). The replacement gets more involved
for r ≥ 3, as we generally must be able to give an appropriate regular gadget
with the constraints mentioned above. We describe the technical details of the
replacement in what follows, then we give the reduction step and, after that,
we show its correctness.

We need to consider the set of edges between a clean region and its boundary.
Let Ei be the set of edges connecting vertices in Bi with vertices in Ci. We
search for all clean regions Ci of size greater than (x + 1) · (r + 1) where x =
max{|Bi|, ⌈

k+1
r+1
⌉} and replace each one by a new clean region of size (x + 1) ·

(r +1) without affecting the neighborhood of any vertex in the corresponding
boundary Bi (notice that (x + 1) · (r + 1) ≥ x · (r + 1) ≥ k + 1, which is
important as this prevents such a new clean region from being part of the
solution). We first describe some structure needed for the replacement, then
we state the reduction step.

We replace a clean region Ci by an r-regular structure Rr,x of size (x+1)·(r+1),
and then reconnect the vertices in Bi with vertices in Rr,x such that Rr,x

remains clean (for this, we apply some modifications in Rr,x) and such that
the degree of the vertices in Bi is as before the replacement. The regular
structure Rr,x is constructed as follows. Take a cycle of 2 ·(x+1) edges, remove
every second edge {u, v} and replace it by a graph Gu,v consisting of a (r−1)-
clique whose vertices are all connected with v and u (notice that Gu,v is Kr+1

with an edge removed). See Figure 4 for an example of such a graph Gu,v. The
resulting graph is r-regular and contains (x + 1) · (r + 1) vertices.

In the reduction step we reconnect vertices in Bi with vertices in Rr,x by
removing some edges in Rr,x and then connecting their endpoints with vertices
in Bi. In this process, we must assure that the new clean region does not decay
into several clean regions. Therefore, we define a set of edges M in Rr,x such
that the graph which results by removing M from Rr,x consists of exactly one
connected component: Any single Gu,v contains a matching Mu,v of size ⌈ r

2
⌉,

11

u v

Fig. 4. The graph Gu,v for r = 5 and a matching (bold edges) in it.

which can be constructed by using a Hamiltonian path from u to v, removing
every second edge on it. See Figure 4 for an example. Let M be the union
of all Mu,v. Observe that M is a matching of size (x + 1)(⌈ r

2
⌉) for Rr,x, since

there are x + 1 copies of Gu,v in Rr,x. Furthermore, observe that Rr,x remains
connected if we remove from it all edges of M , since in each Gu,v there is always
a u-v-path that contains no edge from Mu,v. (this property is independent of
how the set Mu,v was chosen for each Gu,v). The next reduction step applies
these observations.

Step 4:

For r = 2, apply the following replacement procedure for each non-isolated
clean region Ci of G with |Ci| > k + 1. The clean region Ci forms a path
in G. Let a and b be its endpoints in G[Ci]. Remove all vertices in Ci \{a, b}
from G and reconnect a and b by a path with k − 1 new vertices.
For r ≥ 3, apply the following replacement procedure for each non-isolated
clean region Ci of G with |Ci| > (x + 1) · (r + 1):
1. Subdivide in G all edges in Ei. Let L be the set of subdivision vertices.
2. Remove all vertices in Ci from G.
3. Add Rr,x to G, that is, set G := (V (G) ∪ V (Rr,x), E(G) ∪ E(Rr,x)).

4.1 If |L| is even, then choose, arbitrarily, a subset M ′ ⊆ M where |M ′| =
|L|/2, and remove the edges of M ′ from Rr,x. Identify, arbitrarily, their
endpoints with the vertices in L.

4.2 If |L| is odd, then choose, arbitrarily, a subset M ′ ⊆ M where |M ′| =
(|L|+ r− 2)/2, and remove the edges of M ′ from Rr,x (as we will see, r
is also odd in this case). Identify, arbitrarily, |L| − 1 of their endpoints
with all vertices in L except one (say w), and then make w adjacent
with the remaining 2|M ′| − (|L| − 1) = |L| + r − 2− (|L| − 1) = r − 1
endpoints of the edges in M ′.

For r ≥ 2 the replacement is clearly correct, as clean regions with more
than k + 1 vertices are replaced by clean regions with exactly k + 1 vertices.
To see that this procedure works correctly for r ≥ 3, consider the following
remarks.
(1.) From property (2) we have |Ei| ≤ r · |Bi| and hence |L| ≤ r · |Bi|.
(4.) The choice of a set M ′ of claimed size is always possible since the set M

12

is large enough. More formally, we verify that

|M | = (x + 1) · ⌈r/2⌉

≥ (x + 1) · r/2

≥ (|Bi|+ 1) · r/2

≥ (|L|+ r)/2 > |M ′|.

(4.1.) After removing the edges, its endpoints have degree r−1. However, after
identifying each such endpoint with one vertex in L, all vertices in Rr,x have
degree r again, since M is a matching. Due to the above mentioned properties
of M , Rr,x is still one clean region.
(4.2.) First of all, note that (|L|+ r − 2)/2 is a positive integer, since |L| ≥ 1
and since |L| = |Ei| being odd implies r to be odd, which can be seen easily by
stating the number of edges in G[Ci] and between Ci and Bi as 2|E ′|+ |Ei| =
r|Ci|, where E ′ is the set of edges in G[Ci]. With the method in (4.1.) we can
only identify an even number of vertices in L with vertices in Rr,x. Therefore,
there remains one vertex in L which has to be made adjacent to the remaining
endpoints of edges in M ′. It is easy to see that afterwards all vertices in Rr,x

have degree r and that Rr,x is still one clean region.

Thus, Step 4 replaces a clean region Ci of size more than (x+1)·(r+1) by one
of size (x+1) · (r+1) ≥ k+1. Moreover, the new clean region C ′

i is connected,
has the same boundary Bi as Ci, and all vertices in Bi have the same number
of neighbors in C ′

i as they had in Ci. We will now prove that Step 4 produces
an equivalent instance for k-Almost r-Regular Graph. For this, let S be
a size-k vertex set such that G \ S is r-regular. A solution S for G cannot
contain a vertex of any Ci that changed, as Ci contains more than k vertices.
We retained the vertex degree of all vertices in Bi, C ′

i is also a clean region
in G′, and we did not alter the subgraph G \ Ci = G′ \ C ′

i, thus G′ \ S must
also be r-regular. Therefore, S is also a solution for G′. The same argument
holds for the other direction: A solution S ′ for G′ cannot contain any vertex
of any C ′

i, as C ′
i contains more than k vertices, and since G \ Ci = G′ \ C ′

i we
know that S ′ is also a solution for G. Finally, it is easy to verify that the new
instance satisfies properties (1) – (4).

The implementation of this step again follows the ideas of the previous ones.
Again, clean regions can be detected by a modified breadth-first search in O(r ·
n) time. Notice that the number of vertices to be subdivided in the whole graph
is at most r ·n. Subdividing the edges takes O(r ·n) time, and removing clean
regions takes O(r ·n) time in total. The new clean regions can have at most n
vertices and O(r · n) edges in total, thus the total running time for this step
is again O(r · n).

The last reduction step is the following:

13

Step 5:

If G contains more than rk(k + r)(k + 3r + 4) + k + k(k + r) + k2 vertices
then return (Kr, 1), otherwise return (G, k).

Assume that a solution S of size exactly k exists, i.e., G \ S is r-regular. We
define D = NG(S) and F = V (G) \ (S ∪ D) and observe that S, D, F is
a 3-partition of V (G). From property (1) every vertex in G has degree at
most r+k. Therefore, the number of vertices in the neighborhood of S cannot
exceed k(r + k) and thus |D| ≤ k(r + k). We also observe that all vertices
in F are clean, otherwise G \ S would contain a vertex not having degree r,
which contradicts S being a solution. It remains to bound the size of F . Recall
that a clean region Ci is either completely contained in S or no vertex in Ci

is member of S, thus Ci ⊆ F . Therefore, as all vertices in F are clean, F is a
union of clean regions. Suppose that F consists of a set C = {Ci | 0 ≤ i ≤ q}
of q non-isolated clean regions. As there is no edge in G between S and F
(i.e., D separates S and F) and all vertices in F are clean, we obtain that all
boundary vertices of the clean regions in C must be in D, i.e.,

⋃
i=1,...,q Bi ⊆ D.

Also, since G \ S is r-regular, each vertex of D belongs to at most r sets
in B = {B1, . . . , Bq}, and therefore

∑
i=1,...,q |Bi| ≤ r · |D| ≤ rk(k + r). From

property (4),

|Ci| ≤ (max{⌈
k + 1

r + 1
⌉, |Bi|}+ 1) · (r + 1)

≤ max{k + r + 2, |Bi| · (r + 1)}+ r + 1.

Recall that F contains at most
∑

1,...,q |Ci| vertices from non-isolated clean
regions. From property (3), no more than k2 vertices are contained in isolated
regions. Therefore,

|F | ≤ k2 +
∑

1,...,q

(max{|Bi| · (r + 1), k + r + 2}+ r + 1)

≤ k2 +
∑

1,...,q

(|Bi| · (r + 1) + k + 2r + 3)

≤ k2 +
∑

1,...,q

(|Bi| · (r + 1)) +
∑

1,...,q

(k + 2r + 3)

= k2 + rk(k + r)(r + 1) + rk(k + r)(k + 2r + 3)

= k2 + rk(k + r)(k + 3r + 4).

Since |S| = k and |D| ≤ k(k + r) we can conclude that Step 5 returns an
equivalent instance of size O(kr(k+r)2) and the claimed kernel size is correct.
To complete the proof, recall that for all reduction steps described, the running
time was no worse than the running time of constructing an enhanced data
structure, which is O(|E(G)|) = O(n(k + r)). 2

Notice that Theorem 3 holds also for the non-exact version (demanding a
solution of size at most k) of k-Almost r-Regular Graph. The only mod-

14

ification is that we have to replace the second part of Step 3 by a deletion of
all isolated clean regions.

For r = 1, every non-isolated clean region contains a single vertex and Step 3

and Step 4 do not apply at all. This permits us to make a better counting of
the vertices in F that, apart from those belonging to isolated clean regions,
are at most as many as the vertices in D. As any isolated clean region contains
exactly 2 vertices when r = 1, the second part of Step 3 should be applied only
for i = 2, leaving at most k +1 vertices in isolated clean regions. Therefore, in
the case r = 1, the kernel has size at most |S|+2|D| ≤ k+2k(k+1)+k+1 =
O(k2).

5 A Search Tree Based Algorithm for k-Almost r-Regular Graph

In this section we present a simple exact algorithm for k-Almost r-Regular

Graph running in O(n·(r+2)k) time, where n is the number of vertices in the
input graph. It is based on a bounded search tree technique. Let (G, k, r) be
an instance of k-Almost r-Regular Graph. While the graph G is not r-
regular, we choose an arbitrary vertex v ∈ V (G) with deg(v) > r and branch
into the following two cases, where in each case we also always exhaustively
apply the simple rule that each vertex with degree less than r is removed
from G, setting k ← k − 1.

(1) v is a part of the solution, then remove v from G and set k ← k − 1.
(2) v is not a part of the solution, thus it remains in G. Then choose an

arbitrary subset of r + 1 neighbors of v. At least one of these neighbors
must be contained in the solution in order to achieve degree r for v; thus
we branch into the r+1 subcases, and, in each of the subcases, we choose
a neighbor, remove it from G, and set k ← k − 1.

In each subcase of the branching we put at least one vertex from G in the
solution, and we branch into r + 2 subcases. This results in a search tree of
size O((r+2)k). The test of r-regularity can be done in O(nr) time, where n :=
|V (G)|. This means that a solution for k-Almost r-Regular Graph can
be found in O(nr(r + 2)k) time, if it exists. Combining this with Theorem 3
we arrive at the following result.

Theorem 4 For any r ≥ 0, there exists an algorithm for k-Almost r-
Regular Graph with parameter k that runs in O(n(k + r) + kr2(k + r)2 ·
(r + 2)k) steps.

15

6 Conclusion

In this paper, we showed that the parameterized problem asking whether we
can make a graph r-regular by removing k vertices, with k as parameter, is
fixed-parameter tractable by giving a (polynomial size) problem kernel and a
search tree algorithm. In the construction of the kernel we used the fact that
big “clean regions” can be safely replaced by smaller ones (but not too small).
Because r-regularity is not a hereditary property, we had to take care that
such a replacement locally maintains r-regularity. Similar ideas were employed
in [7] for another non-hereditary property. It is an interesting problem to
characterize the properties for which the vertex removal problem is fixed-
parameter tractable. That way, one might extend the general result in [2] for
non-hereditary properties as well.

Acknowledgements

We wish to thank an anonymous referee for detecting, in a previous version
of this paper, a flaw in Step 4 of our kernelization. Moreover, we thank
two anonymous referees for helpful comments, especially for pointing out a
simplified version of the gadget construction in the kernelization algorithm.
We thank Jiong Guo and Sebastian Wernicke (University Jena, Germany) for
giving helpful advice and inspiring ideas. We also thank Josep Dı́az (UPC,
Barcelona, Spain) for encouraging us to work on this problem.

References

[1] N. Biggs. Algebraic Graph Theory, Second Edition. Cambridge University Press,
1994.

[2] L. Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58(4):171–176, 1996.

[3] D. M. Cardoso, M. Kamiński, and V. Lozin. Maximum k-regular induced
subgraphs. Journal of Combinatorial Optimization, 14(4):455–463, 2007.

[4] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. In Proceedings of

STOC’08, pages 177–186, ACM Press, 2008.

[5] S. A. Cook and P. McKenzie. Problems complete for deterministic logspace.
Journal of Algorithms, 8(3):385–394, 1987.

16

[6] F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and
K. Stevens. An O(2O(k)n3) FPT-algorithm for the undirected feedback vertex
set problem. Theory of Computing Systems, 41(3):479–492, 2007.

[7] J. D́ıaz and D. M. Thilikos. Fast FPT-algorithms for cleaning grids. In
Proceedings of STACS’06, volume 3884 of LNCS, pages 361–371. Springer, 2006.

[8] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[9] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and
completeness II: On completeness for W [1]. Theoretical Computer Science,
141(1-2): 109–131, 1995.

[10] S. Fiorini, N. Hardy, B. Reed, and A. Vetta. Planar graph bipartization in
linear time. In Proceedings of GRACO’05, volume 19 of Electronic Notes in

Discrete Mathematics, pages 265–271 (electronic). Elsevier, 2005.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[12] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

[13] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-
based fixed-parameter algorithms for Feedback Vertex Set and Edge
Bipartization. Journal of Computer and System Sciences, 72(8): 1386–1396,
2006.

[14] J. Guo and R. Niedermeier. Invitation to data reduction and problem
kernelization. SIGACT News, 38(1): 31–45, 2007.

[15] S. Khot and V. Raman. Parameterized complexity of finding subgraphs with
hereditary properties. Theoretical Computer Science, 289(2):997-1008, 2002.

[16] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Sciences,
20(2):219–230, 1980.

[17] D. Marx. Chordal deletion is fixed-parameter tractable. In Proceedings of

WG’06, volume 4271 of LNCS, pages 37–48. Springer, 2006.

[18] L. Mathieson and S. Szeider. The parameterized complexity of regular
subgraphs problems and generalizations, In Proceedings of CATS’08, volume 77
of Conferences in Research and Practice in Information Technology, pages 79–
86, 2008.

[19] L. Mathieson and S. Szeider. Parameterized graph editing with chosen vertex
degrees. In Proceedings of COCOA’08, LNCS, Springer, 2008. To appear.

[20] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[21] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations

Research Letters, 32(4):299–301, 2004.

17

[22] I. A. Stewart. Deciding whether a planar graph has a cubic subgraph is NP-
complete. Discrete Mathematics, 126(1-3):349–357, 1994.

[23] I. A. Stewart. Finding regular subgraphs in both arbitrary and planar graphs.
Discrete Applied Mathematics, 68(3):223–235, 1996.

[24] I. A. Stewart. On locating cubic subgraphs in bounded-degree connected
bipartite graphs. Discrete Mathematics, 163(1-3):319–324, 1997.

[25] M. Yannakakis. Node- and edge-deletion NP-complete problems. In Proceedings

of STOC’78, pages 253–264. ACM, New York, 1978.

18

	Introduction
	Preliminaries
	Hardness and Completeness Results
	A Problem Kernel
	A Search Tree Based Algorithm for k-Almost r-Regular Graph
	Conclusion
	References

