
Kernelization Through Tidying

A Case Study Based on s-Plex Cluster Vertex Deletion⋆
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Abstract. We introduce the NP-hard graph-based data clustering prob-
lem s-Plex Cluster Vertex Deletion, where the task is to delete at
most k vertices from a graph so that the connected components of the
resulting graph are s-plexes. In an s-plex, every vertex has an edge to
all but at most s − 1 other vertices; cliques are 1-plexes. We propose a
new method for kernelizing a large class of vertex deletion problems and
illustrate it by developing an O(k2

s
3)-vertex problem kernel for s-Plex

Cluster Vertex Deletion that can be computed in O(ksn2) time,
where n is the number of graph vertices. The corresponding “kerneliza-
tion through tidying” exploits polynomial-time approximation results.

1 Introduction

The contributions of this work are two-fold. On the one hand, we introduce a
vertex deletion problem in the field of graph-based data clustering. On the other
hand, we propose a novel method to derive (typically polynomial-size) problem
kernels for NP-hard vertex deletion problems whose goal graphs can be charac-
terized by forbidden induced subgraphs. More specifically, using “kernelization
through tidying”, we provide a quadratic-vertex problem kernel for the NP-hard
s-Plex Cluster Vertex Deletion problem, for constant s ≥ 1.

s-Plex Cluster Vertex Deletion.Many vertex deletion problems in graphs
can be considered as “graph cleaning procedures”, see Marx and Schlotter [11].
This view particularly applies to graph-based data clustering, where the graph
vertices represent data items and there is an edge between two vertices iff the
two items are similar enough [14]. Then, a cluster graph is a graph where every
connected component forms a cluster, a dense subgraph such as a clique in the
most extreme case. Due to faulty data or outliers, the given graph may not
be a cluster graph and it needs to be cleaned in order to become a cluster
graph. A recent example for this is the NP-hard Cluster Vertex Deletion
problem [9], where the task is to delete as few vertices as possible such that the
resulting graph is a disjoint union of cliques. In contrast, in the also NP-hard
s-Plex Cluster Vertex Deletion problem we replace cliques with s-plexes
(where s is typically a small constant):
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s-Plex Cluster Vertex Deletion (s-PCVD)
Input: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Is there a vertex set S ⊆ V with |S| ≤ k such that G[V \ S]
is a disjoint union of s-plexes?

Herein, an s-plex is a graph where every vertex has an edge to all but at most s−1
other vertices [13]. Subsequently, we refer to the solution set S as s-plex cluster
graph vertex deletion set (s-pvd set). The concept of s-plexes has recently received
considerable interest in various fields, see, e.g., [2,6,7,12]. The point of replacing
cliques with s-plexes in the context of cluster graph generation is that s-plexes
better allow to balance the number of vertex deletions against the sizes and
densities of the resulting clusters. Note that too many vertex deletions from the
input graph may too strongly change the original data whereas asking for cliques
as clusters often seems overly restrictive [5,13]. Summarizing, s-PCVD blends
and extends previous studies on Cluster Vertex Deletion [9] (which is the
same as 1-PCVD) and on s-Plex Editing [7], where in the latter problem one
adds and deletes as few edges as possible to transform a graph into an s-plex
cluster graph.

Problem kernelization. Data reduction and problem kernelization is a core
tool of parameterized algorithmics [8]. Herein, viewing the underlying problem
as a decision problem, the goal is, given any problem instance x (a graph in
our case) with a parameter k (the number of vertex deletions in our case), to
transform it in polynomial time into a new instance x′ with parameter k′ such
that |x′| is bounded by a function in k (ideally, a polynomial in k), k′ ≤ k, and
(x, k) is a yes-instance iff (x′, k′) is a yes-instance. We call (x′, k′) the problem
kernel. It is desirable to get the problem kernel size |x′| as small as possible.
By means of a case study based on s-PCVD, we will present a method to de-
velop small problem kernels for vertex deletion problems where the goal graph
can be characterized by a set of forbidden induced subgraphs. For instance, if
the goal graph shall be a disjoint union of cliques, then it is characterized by
forbidding induced P3’s [14], that is, induced paths containing three vertices.
A more complex characterization has been developed for graphs that are dis-
joint unions of s-plexes [7]. We term our data reduction approach “kernelization
through tidying”—it uses a polynomial-time constant-factor approximation to
“tidy up” the graph to make data reduction rules applicable.

Discussion of results. Complementing and extending results for Cluster
Vertex Deletion [9], we prove an O(k2s3)-vertex problem kernel for s-PCVD,
which can be computed in O(ksn2) time. Note that the related edge modifica-
tion problem s-Plex Editing has an O(ks2)-vertex problem kernel which can
be computed in O(n4) time [7]. We emphasize that the underlying kernelization
algorithms are completely different in both cases and that vertex deletion is a
“more powerful” operation than edge modification, so a larger problem kernel in
the case of s-PCVD does not come unexpectedly. Our main conceptual contribu-
tion is the “kernelization through tidying” method outlined in Section 2. There
is related work by Kratsch [10] that provides polynomial-size problem kernels for
constant-factor approximable problems contained in the classes MIN F+Π1 and
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MAX NP. The s-PCVD problem is contained in MIN F+Π1. Applying Kratsch’s
more general method to s-PCVD would lead to an kO(s)-vertex kernel. By way
of contrast, in our O(k2s3)-vertex bound, the value of s does not influence the
degree of the polynomial in k, a significant advantage. Other related work is due
to Abu-Khzam [1], who considers problem kernels for Hitting Set problems.
Again, translating our problem instances into Hitting Set instances (which
can be done in a straightforward way) and applying a kernelization for Hit-
ting Set would yield problem instances which are size-bounded by polynomials
whose degree depends on s.

Due to space limits, most proofs are deferred to a full version of this paper.
Notation. We only consider undirected graphs G = (V,E), where V is the

set of vertices and E is the set of edges. Throughout this work, we use n := |V |
andm := |E|. The open neighborhood N(v) of a vertex v ∈ V is the set of vertices
that are adjacent to v. For a vertex set U ⊆ V , we defineN(U) :=

⋃
v∈U N(v)\U .

We call a vertex v ∈ V adjacent to V ′ ⊆ V if v has a neighbor in V ′. Analogously,
we call U ⊆ V adjacent to a vertex set W ⊆ V with W ∩U = ∅ if N(U)∩W 6= ∅.
We call two vertices v and w connected in G if there exists a path from v to w
in G. For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over
the vertex set V ′ with the edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V , we
use G − V ′ as an abbreviation for G[V \ V ′]. For a set F of graphs, we call a
graph F-free if it does not contain any graph from F as an induced subgraph.

2 Kernelization Through Tidying

For a set F of forbidden induced subgraphs (Fisgs) we outline a general kernel-
ization method for the F-Free Vertex Deletion problem. Here, the task is,
given an undirected graph G = (V,E) and an integer k ≥ 0, to decide whether
the graph can be made F-free by deleting at most k vertices. If F is finite (as
we have for s-PCVD, s being a constant), then F-Free Vertex Deletion is
clearly fixed-parameter tractable with respect to the parameter k, as directly fol-
lows from Cai’s [4] general result. Moreover, one may observe that its minimiza-
tion version is in MIN F+Π1; therefore, using a technique due to Kratsch [10],
F-Free Vertex Deletion admits a problem kernel containing O(kh) ver-
tices, where h is the maximum number of vertices of a Fisg in F . We present an
alternative technique to kernelize such vertex deletion problems. While the tech-
nique of Kratsch [10] is more general, our approach seems to be useful to obtain
smaller problem kernels. For example, the Fisgs for s-PCVD consist of at most
s+1+Ts vertices [7], where Ts is the maximum integer satisfying Ts ·(Ts+1) ≤ s;
therefore, Kratsch’s technique [10] yields an O(ks+1+Ts)-vertex problem kernel.
In contrast, we obtain an O(k2s3)-vertex problem kernel using a novel method.
Our approach comprises the following three main steps.

Approximation Step. This step is to compute an approximate solution X
for F-Free Vertex Deletion in polynomial time; let a be the corresponding
approximation factor. Obviously, the residual graph G − X is F-free. Since X
is a factor-a approximate solution, we can abort with returning “no-instance”
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Fig. 1: Minimal forbidden induced subgraphs (Fisgs) for 2-plex cluster graphs.

if |X| > ak. Hence, otherwise, we proceed knowing that |X| ≤ ak. It remains to
bound the number of vertices in the residual graph G−X. To this end, we use
the property that G−X is F-free.

This property can be difficult to exploit; however, it is always possible to
efficiently find a small vertex set T ⊆ V \X (called tidying set) such that in G−T
(called the tidy subgraph), for each v ∈ X, deleting all vertices in X \ {v} results
in an F-free graph (called the local tidiness property of G− T ). As we will see,
this additional property helps in finding suitable data reduction rules to shrink
the size of G−X. The subsequent Tidying Step finds such a tidying set T .

Tidying Step. In this step, polynomial-time data reduction is employed and
the tidying set T is computed. Roughly speaking, the data reduction ensures that
the tidying set does not become too big.

First, we describe the data reduction. Compute for each v ∈ X a maximal
set F(v) of Fisgs that pairwise intersect exactly in v. If |F(v)| > k, then a
“high-degree data reduction rule” deletes v from both G and X and decreases
the parameter k by one. The correctness of this rule is easy to verify.

Second, we describe how to compute the tidying set T , show that its size is
bounded, and argue that G−T fulfills the local tidiness property. We define the
tidying set of a vertex v ∈ X as T (v) :=

⋃
F∈F(v) V (F ) \X (that is, all vertices

in V \X that are in a Fisg of F(v)). The tidying set of the whole graph is defined
as T :=

⋃
v∈X T (v). Since after the high-degree data reduction rule |F(v)| ≤ k,

we know that |T (v)| ≤ hk, where h is the maximum number of vertices of a Fisg
in F ; hence, |T | ≤ hak2. The local tidiness property of G − T follows directly
from the maximality of F(v). The local tidiness property can be exploited in the
final Shrinking Step.

Shrinking Step. This is the most unspecified step, which has to be devel-
oped using specific properties of the studied vertex deletion problem. In this step,
the task is to shrink the tidy subgraph G − T using problem-specific data re-
duction rules that exploit the local tidiness property. Depending on the strength
of these data reduction rules, the total problem kernel size is as follows: as we
have seen, the factor-a approximate solution X has size at most ak. The tidying
set T based on size-at-most-h Fisgs has size at most hak2. If we shrink the tidy
subgraph G− T to at most f(k) vertices, then we obtain a problem kernel with
O(ak + hak2 + f(k)) vertices.

In the next section, we present a case study of kernelization through tidying
using 2-PCVD. After that, we generalize the approach to s-PCVD with s > 2
(Section 4). Finally, we show how to significantly speed up the kernelization.
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3 A Problem Kernel for 2-Plex Cluster Vertex Deletion

We specify the steps outlined in Section 2 to obtain a problem kernel for 2-PCVD.

Approximation Step. Following the tidying kernelization method, greedily com-
pute a factor-4 approximate 2-plex cluster graph vertex deletion set (2-pvd set)X
using the Fisg characterization of 2-plex cluster graphs [7] (simply find one
of the three four-vertex Fisgs (see Figure 1), add its vertices to X, and re-
move its vertices from the graph, until the remaining graph is a 2-plex cluster
graph). If |X| > 4k, then simply return “no-instance”. Therefore, in the follow-
ing one may assume that |X| ≤ 4k. It remains to bound the number of ver-
tices in the residual graph G−X.

Using the linear-time algorithm by Guo et al. [7] to find a Fisg for 2-plex
cluster graphs, we can compute X in O(k · (n+m)) time, by either applying the
linear-time algorithm at most k + 1 times or returning “no-instance”.

Tidying Step. Let X be the factor-4 approximate 2-pvd set computed in the
Approximation Step. For each v ∈ X, greedily compute a maximal set F(v) of
Fisgs pairwise intersecting exactly in v. Since the Fisgs for 2-PCVD contain
four vertices, this can be done in O(n3) time for each v ∈ X and therefore
in O(|X| · n3) = O(k · n3) time in total.1

Reduction Rule 1. If there exists a vertex v ∈ X such that |F(v)| > k, then
delete v from G and X and decrement k by one.

Lemma 1. Rule 1 is correct and can be exhaustively applied in O(n+m) time.

Additionally, we apply a simple and obviously correct data reduction rule in
O(n+m) time:

Reduction Rule 2. Delete connected components from G that form 2-plexes.

In the following, we assume that G is reduced with respect to Rules 1 and 2.
Moreover, X is a 2-pvd set of size at most 4k, and a maximal set of Fisgs F(v)
that pairwise intersect exactly in v shall be computed for each v ∈ X. The
tidying set is T (v) :=

⋃
F∈F(v) V (F ) \X for each v ∈ X and the tidying set for

the whole graph is T :=
⋃

v∈X T (v). Since |F(v)| ≤ k, |X| ≤ 4k, and the Fisgs
have at most four vertices, we can conclude that |T | ≤ 12k2. It remains to bound
the number of vertices in G− (X ∪ T ); more specifically, we bound the number
of vertices in the tidy subgraph G− T .

Shrinking Step. Since the set F(v) of Fisgs is maximal, the tidy subgraph G−T
fulfills the local tidiness property, that is, for each v ∈ X, deleting X \ {v}
from G− T results in an F-free graph.

1 In Section 4, we present a slightly modified version of our kernelization algorithm
that can be performed in O(kn2) time.
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H

X

H ∩ T

H \ T

(a) An X-separated set H ∈ H(X)

H

X

H ∩ T

H \ T

(b) A non-X-separated set H ∈ H(X)

Fig. 2: Diagrams illustrating an X-separated and a non-X-separated set H ∈
H(X). The solid lines between X and H denote possible edges, and the dashed
line between X and H \T illustrates that there is no edge between these two sets.

Definition 1. Let {G1, . . . , Gl} be the set of connected components of G−X and
let H(X) := {V (G1), . . . , V (Gl)} be the collection of vertex sets of the connected
components of G−X.

Since X is a 2-pvd set, each element of H(X) induces a 2-plex in G.

The local tidiness property helps in finding useful structural information; in
particular, observe that each vertex v ∈ X can be adjacent to vertices of arbi-
trarily many clusters in G−X, but in the tidy subgraph G−T , each vertex v ∈ X
is adjacent to vertices of at most two clusters in G − (T ∪ X); otherwise, if a
vertex v ∈ X were adjacent to at least three clusters in G− (T ∪X), then there
would be a Fisg (more precisely, a K1,3) that contains v and three vertices
from G− (T ∪X), contradicting the local tidiness property of G−T . With such
kind of observations, we can show that the local tidiness property implies the
following two properties for each v ∈ X. These properties will later be exploited
by the data reduction rules and the corresponding proof of the kernel size:

Property 1: There are at most two sets H ∈ H(X) with H \ T adjacent to v.
Property 2: If there is a set H ∈ H(X) such that H \T is adjacent to v, then v

is nonadjacent to at most one vertex in H \ T .

Lemma 2. The local tidiness property of G− T implies Properties 1 and 2.

Recall that |X| ≤ 4k and that |T | ≤ 12k2; it remains to reduce the size of the
tidy subgraph G − T . To this end, we distinguish between two types of sets
in H(X), namely X-separated and non-X-separated sets:

Definition 2. A vertex set H ∈ H(X) is X-separated if H \ T is nonadja-
cent to X. A connected component of G −X is X-separated if its vertex set is
X-separated.
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See Figure 2 for an illustration. The remainder of this section is mainly devoted
to data reduction rules that shrink the size of large sets inH(X). We deal withX-
separated sets and non-X-separated sets separately. The intuitive idea to bound
the number of vertices in X-separated sets is as follows. We use the fact that
T ∩H is a separator to show that if there are significantly more vertices in H \T
than inH∩T , then some vertices inH\T can be deleted from the graph. Together
with the size bound for T , one can then obtain a bound on the number of vertices
in X-separated sets. The intuitive idea to bound the number of vertices in non-
X-separated sets is to use Properties 1 and 2. Roughly speaking, Property 1
guarantees that in G − T , each vertex from X is adjacent to at most two sets
from H(X); if there is a large non-X-separated set H ∈ H(X), then most of its
vertices must have the same neighbors in X due to Property 2. This observation
can be used to show that some vertices in H \ T can be deleted from the graph.

In the following, we exhibit the corresponding technical details. First, we
shrink the size of the X-separated sets.

Bounding the size of X-separated connected components. The following
data reduction rule decreases the number of vertices in large X-separated sets
in H(X). Recall that G is reduced with respect to Rules 1 and 2.

Reduction Rule 3. If there exists a vertex set H ∈ H(X) that is X-separated
by T such that |H \T | > |H ∩T |+1, then choose an arbitrary vertex from H \T
and delete it from G.

Lemma 3. Rule 3 is correct and can be exhaustively applied in O(n+m) time.

Proof. First, we show the correctness. Let u ∈ H be the vertex that is deleted by
Rule 3. If (G, k) is a yes-instance, then obviously (G−{u}, k) is a yes-instance as
well. Now suppose that (G−{u}, k) is a yes-instance. Let S be a 2-pvd set of size
at most k for G− {u}. If S is a 2-pvd set for G, then (G, k) is obviously a yes-
instance. Otherwise, u must be contained in a Fisg F in G−S; we show that in
this case one can use S to construct a 2-pvd set S′ of size at most k for G. SinceH
induces a 2-plex and since H is X-separated, F must contain a vertex v ∈ X and
a vertex w ∈ H ∩ T . By the preconditions of Rule 3 and because |H ∩ T | ≥ 1,
we have |H \ {u}| = |H \ (T ∪ {u})|+ |H ∩ T | ≥ 3. Thus, all vertices in H \ {u}
are connected to v and the at least |H ∩ T | + 1 vertices in H \ (T ∪ {u}) are
nonadjacent to v, because H is X-separated. Since v, w 6∈ S, the 2-pvd set S
for G − {u} must contain all but at most one vertex from H \ (T ∪ {u}), thus
|S ∩ (H \ T )| ≥ |H ∩ T |. Hence S′ := (S \ (H \ T )) ∪ (H ∩ T ) is a 2-pvd set
for G − {u} of size at most |S| ≤ k. Since (H ∩ T ) ⊆ S′, u ∈ H \ T , and H
is X-separated, it follows that S′ is also a 2-pvd set of size at most k for G,
thus (G, k) is a yes-instance.

For the running time, consider that we can construct H(X) in O(n + m)
time. If for a H ∈ H(X) we find that all vertices in H \T are not adjacent to X,
then apply Rule 3 to H until |H \ T | ≤ |H ∩ T | + 1; deleting vertices from a
graph takes O(n+m) time in total. ⊓⊔
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H

R(H)

X

H ∩ T

A(H)

C(H)

B(H)

Fig. 3: Illustration of the sets A(H), B(H), C(H), and R(H). Solid lines indicate
edges and dashed lines “non-edges”. Note that the sets A(H), B(H), C(H),
and H∩T might have pairwise non-empty intersections (which is not relevant for
our arguments); to keep the figure simple, they are drawn without intersections.

With Rule 3, the number of vertices inH\T is bounded from above by |H∩T |+1
for each X-separated set H ∈ H(X). It remains to shrink the size of non-X-
separated sets.

Bounding the size of non-X-separated connected components. Our goal
is to find vertices in a non-X-separated set H ∈ H(X) that can safely be deleted
by a data reduction rule. To this end, we need the following definitions. We call
a vertex set Z ⊆ V an X-module if any two vertices u, v ∈ Z satisfy N(u)∩X =
N(v) ∩X. We define the following set of “candidate” vertices for deletion.

Definition 3. Let H ∈ H(X). Then, a redundant subset R ⊆ H is an X-
module in which every vertex u ∈ R is adjacent to every vertex in H \R.

With this definition, one can state the following data reduction rule; we describe
later how a redundant subset of H can be computed.

Reduction Rule 4. Let R ⊆ H be a redundant subset of some H ∈ H(X).
If |R| > k + 3, then choose an arbitrary vertex from R and delete it from G.

Lemma 4. Rule 4 is correct.

We next show how to efficiently find a redundant subset R ⊆ H. See Figure 3
for an illustration of the following definitions. Let A(H) be the set of vertices
in H that are nonadjacent to at least one vertex in H ∩ T ; let B(H) be the
set of vertices in H that are nonadjacent to at least one vertex from X that
has some neighbor in H \ T ; finally, let C(H) be the set of vertices in H that
are nonadjacent to some vertex in B(H). Let R̄(H) := A(H) ∪ B(H) ∪ C(H)
and R(H) := H\(R̄(H)∪T ). Intuitively, R̄(H) contains vertices inH that violate
Definition 3, guaranteeing that R(H) contains vertices that satisfy Definition 3.
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Lemma 5. For each H ∈ H(X), the set R(H) ⊆ H is redundant and the
set R̄(H) contains at most |H ∩ T |+ 2|N(H \ T ) ∩X| vertices.

Proof. To prove that R(H) is redundant, one has to show that R(H) is an X-
module (that is, N(u)∩X = N(v)∩X for all u, v ∈ R(H)) and that each vertex
in R(H) is adjacent to all vertices in H \R(H) (see Definition 3). We first show
N(u) ∩ X = N(v) ∩ X for all u, v ∈ R(H). Assume that w ∈ N(u) ∩ X. This
implies w ∈ N(H \ T ) ∩ X. If w /∈ N(v) ∩ X, then v ∈ B(H), contradicting
v ∈ R(H); as a consequence, N(u) ∩X ⊆ N(v) ∩X. The inclusion N(v) ∩X ⊆
N(u) ∩X can be shown analogously.

We now show that each vertex in R(H) is adjacent to all vertices in H\R(H).
Every vertex in R(H) is (by definition) adjacent to all vertices in H ∩ T and
B(H). Because each vertex in A(H)∪C(H) is nonadjacent to a vertex in B(H)∪
(H ∩ T ) and because H induces a 2-plex, each vertex in R(H) is adjacent to all
vertices in A(H)∪C(H). Thus, each vertex in R(H) is adjacent to every vertex
in H \R(H).

BecauseH induces a 2-plex, |A(H)| ≤ |H∩T | and |C(H)| ≤ |B(H)|. For each
vertex v ∈ X, Property 2 states that there is at most one vertex in H \T that is
nonadjacent to v. Thus, |B(H)| ≤ |N(H \ T )∩X|. As a consequence, |R̄(H)| =
|A(H) ∪B(H) ∪ C(H)| ≤ |H ∩ T |+ 2|N(H \ T ) ∩X|. ⊓⊔

Lemma 6. For all H ∈ H(X), the set R(H) can be computed in O(n2) time.

By Lemma 6, we can compute in O(n2) time the sets R(H) and shrink them
using Rule 4 so that |R(H)| ≤ k+ 3. The number of vertices in H \ (T ∪R(H))
is upper-bounded by |H ∩ T | + 2|N(H \ T ) ∩X| due to Lemma 5. This shows
the following proposition:

Proposition 1. The exhaustive application of Rule 4 takes O(n2) time. Af-
ter that, for each non-X-separated set H ∈ H(X), |H \ T | has size at most
|H ∩ T |+ 2|N(H \ T ) ∩X|+ k + 3.

Now we have all ingredients to show our main result.

Theorem 1. 2-Plex Cluster Vertex Deletion admits a problem kernel of
at most 52k2 + 32k vertices, which can be computed in O(k · n3) time.

Using a more intricate analysis, without introducing further data reduction rules,
we can improve the upper bound from Theorem 1 to 40k2 + 24k vertices [3].

4 Generalization to s-Plex Cluster Vertex Deletion

In this section, we generalize the kernelization approach for 2-PCVD (Section 3)
to s-PCVD with s > 2, focusing the presentation on the main differences.
In addition, in the last part of this section, we discuss how to speed up the
kernelization algorithm.

As in Section 3, we start with the Approximation Step. To greedily compute
an approximate solution X, we employ the algorithm by Guo et al. [7], which
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finds a Ts-vertex Fisg if the given graph contains one; here, Ts is the largest
integer satisfying Ts · (Ts + 1) ≤ s. IfX contains more than k·(s+1+Ts) vertices,
then return “no-instance”. Therefore, in the following, assume that |X| ∈ O(sk).

For the Tidying Step, for each v ∈ X, compute a maximal set F(v) of Fisgs
that pairwise intersect exactly in v. A simple algorithm (trying all subgraphs
of G− {v} with at most s+ Ts vertices) takes O(|X| · sns+Ts) = O(s2k · ns+Ts)
time in total (that is, polynomial time). Then, apply Rule 1, that is, if there
exists a vertex v ∈ X such that |F(v)| > k, then delete v from G and X
and decrement k by one. After that, apply a data reduction rule that deletes
connected components from G that are s-plexes (cf. Rule 2). The tidying set
is T (v) :=

⋃
F∈F(v) V (F ) \X for each v ∈ X and the tidying set for the whole

graph is T :=
⋃

v∈X T (v). Since |F(v)| ≤ k, |X| = O(sk), and the Fisgs have
at most O(s) vertices, it follows that |T | = O(s2k2). It remains to describe
the Shrinking Step, which decreases the number of vertices in the tidy sub-
graph G− T . For G = (V,E), let H(X) := {H ⊆ V | H induces a connected
component in G−X}. Analogous to the case s = 2, we can show that the local
tidiness property implies the following two properties for each v ∈ X:
Property 1: There are at most s sets H ∈ H(X) with H \ T adjacent to v.
Property 2: If there is a set H ∈ H(X) such that H \T is adjacent to v, then v

is nonadjacent to at most 2s− 3 vertices in H \ T .
We again distinguish between X-separated sets H ∈ H(X) and non-X-separated
sets H ∈ H(X). The main difference compared to the case s = 2 is that the proof
of the upper bound on the size of the non-X-separated sets is technically more
demanding.

Reduction Rule 5 (Generalization of Rule 3). If there exists a vertex
set H ∈ H(X) that is X-separated by T such that |H \ T | ≥ |H ∩ T | + 2s − 2,
then choose an arbitrary vertex from H \ T and delete it from G.

Next, we deal with non-X-separated sets in H(X). To this end, we need the
following definition.

Definition 4 (Generalization of Definition 3). Let H ∈ H(X). Then, we
call a subset R ⊆ H redundant if there is an X-module Z with R ⊆ Z ⊆ H that
contains all vertices from H that are nonadjacent to a vertex in R.

The main difference to Definition 3 for s = 2 is that one cannot guarantee that
each vertex in a redundant subset R is adjacent to all vertices in H \R.

Reduction Rule 6 (Generalization of Rule 4). Let R ⊆ H be a redundant
subset of some H ∈ H(X). If |R| ≥ k + 2s, then choose an arbitrary vertex
from R and delete it from G.

Lemma 7. Rule 6 is correct.

To find a redundant subset R(H) ⊆ H, one can use the same definitions of R(H)
and R̄(H) as for the case s = 2; however, the proof that R(H) is a redundant
subset becomes slightly more involved.
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Lemma 8 (Generalization of Lemma 5). For each H ∈ H(X), the set
R(H) ⊆ H is redundant and the set R̄(H) contains O(s · |H ∩ T |+ s2 · |N(H \
T ) ∩X|) vertices.

Now, we are ready to prove the problem kernel.

Theorem 2. s-PCVD admits a problem kernel of O(k2s3) vertices, which can
be computed in O(s2k · ns+Ts) time, where Ts is the maximum integer satisfy-
ing Ts · (Ts + 1) ≤ s.

Speeding up the Kernelization Algorithms. So far, we focused on the kernel size
rather than the running time of the kernelization. The bottleneck of the kernel-
ization result given by Theorem 2 is the running time of the simple algorithm
that finds for each v ∈ X a maximal set F(v) of Fisgs that pairwise intersect
exactly in v. The maximality of F(v) was used to prove that the tidying set T
fulfills Properties 1 and 2 (of Section 4). We obtain a fast kernelization if we
do not demand that F(v) is maximal; rather, we show that we can compute a
set T (v) of bounded size such that Properties 1 and 2 are still fulfilled.

Lemma 9. Let X be an s-pvd set. Then, for all v ∈ X, a vertex set T (v)
with |T (v)| ≤ 2sk and satisfying the following properties can be found in O(|X| ·
n2) time:

1. For each vertex v ∈ X, there are at most s sets H ∈ H(X) such that H \T (v)
is adjacent to v.

2. If there is a vertex v ∈ X and a set H ∈ H(X) such that H \T (v) is adjacent
to v, then v is nonadjacent to at most 2s− 3 vertices in H \ T (v).

Using Lemma 9 instead of the expensive computation of T (v) in Section 4 and
a few additional tricks [3], the following result can be shown.

Theorem 3. s-PCVD admits a problem kernel of O(k2s3) vertices, which can
be computed in O(ksn2) time.

5 Conclusion

Our results are based on linking kernelization with polynomial-time approxi-
mation, dealing with vertex deletion problems whose goal graphs are charac-
terized by forbidden induced subgraphs. This is a rich class of graphs, among
others containing various cluster graphs. When applicable, our method may al-
low for significantly smaller problem kernel sizes than the more general method
by Kratsch [10].

As to future work, it would be desirable to start a general study under
which conditions fixed-parameter tractable vertex deletion problems possess
polynomial-size kernels.
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