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Abstract. We survey the conceptual framework and several applica-
tions of the iterative compression technique introduced in 2004 by Reed,
Smith, and Vetta. This technique has proven very useful for achieving a
number of recent breakthroughs in the development of fixed-parameter
algorithms for NP-hard minimization problems. There is a clear potential
for further applications as well as a further development of the technique
itself. We describe several algorithmic results based on iterative compres-
sion and point out some challenges for future research.

1 Introduction

Until the year 2004, the parameterized complexity of several important NP-
hard minimization problems was open. Then, Reed, Smith, and Vetta [42] intro-
duced in a very short paper a new technique that is now called iterative com-
pression. Meanwhile, based on this technique, a number of the mentioned open
questions could be positively answered by giving corresponding fixed-parameter
algorithms. To become more specific, let us consider the NP-complete Ver-
tex Bipartization problem, where one is given an undirected graph G =
(V, E) and an integer k ≥ 0, and the question is whether there is a set of
at most k vertices such that their deletion leaves a bipartite graph. Due to
iterative compression, now it is known that Vertex Bipartization can be
solved in O(3k · |V ||E|) time [42,29]. In other words, Vertex Bipartization is
fixed-parameter tractable with respect to the parameter k. Since then, similar
breakthroughs have been achieved, for example, for the NP-complete problems
Undirected Feedback Vertex Set [11,28,8], Directed Feedback Ver-
tex Set [10], and Almost 2-Sat [41]. Here, we review the central ideas behind
iterative compression and (some of) its applications. To this end, we choose the
recently studied NP-complete Cluster Vertex Deletion problem [32] as our
running example for exhibiting the “essentials” of iterative compression.
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Notation. For a graph G = (V, E) and a vertex set S ⊆ V , let G[S] be the
subgraph of G induced by S. A parameterized problem (I, k) is fixed-parameter

tractable with respect to the parameter k if it can be solved in f(k)·poly(|I|) time,
where I is the input instance (see [15,19,38]). Fixed-parameter tractability can be
viewed as an alternative to polynomial-time approximability in dealing with NP-
hard problems. An exact algorithm showing the fixed-parameter tractability of a
parameterized problem is called fixed-parameter algorithm. In all graph problems
that follow, n denotes the number of vertices and m denotes the number of edges.

2 Illustration of the Basic Technique

In the following, we exhibit the iterative compression technique by using the NP-
complete Cluster Vertex Deletion (CVD) problem, arising in graph-based
data clustering, as a running example.

Input: An undirected graph G = (V, E) and a nonnegative number k.
Question: Is there a vertex subset S ⊆ V with |S| ≤ k such that
deleting all vertices in S from G results in a cluster graph, that is, a
graph where every connected component forms a clique?

We present a simplified version of a more general algorithm [32] that solves the
vertex-weighed variant of Cluster Vertex Deletion. Note that a graph is a
cluster graph if and only if it contains no induced path of three vertices (referred
to as P3)

1.
The central idea of iterative compression is to employ a so-called compression

routine. A compression routine is an algorithm that, given a problem instance
and a corresponding solution, either calculates a smaller solution or proves that
the given solution is of minimum size. Using a compression routine, one finds an
optimal solution to a problem by inductively building up the problem structure
and iteratively compressing intermediate solutions.

Example CVD. In the following, we call a solution for CVD a cvd-set. Here, the
problem structure is built up vertex by vertex. We start with V ′ = ∅ and S = ∅;
clearly, S is a cvd-set for G[V ′]. Iterating over all graph vertices, step by step we
add one vertex v ∈ V \V ′ to both V ′ and S. Then S is still a cvd-set for G[V ′]. In
each step, if |S| > k, then we try to find a smaller cvd-set for G[V ′] by applying
a compression routine. It takes the graph G[V ′] and the cvd-set S for G[V ′], and
returns a smaller cvd-set for G[V ′], or proves that S is optimal. If S is optimal,
then we can conclude that G does not have a cvd-set of size at most k. Since
eventually V ′ = V , we obtain a solution for G once the algorithm returns S. Note
that almost all known applications of iterative compression on graph problems
with vertex subsets as solutions essentially build up the graph in this way.2

1 Three vertices u, v, w ∈ V of a graph G = (V, E) form an induced path if exactly
two of the three edges {u, v}, {u, w}, {v, w} are contained in E.

2 An alternative example where the graph is built up edge by edge is given with the
NP-complete Edge Bipartization problem [28].
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The main point of the iterative compression technique is that if the com-
pression routine is a fixed-parameter algorithm, then so is the whole algorithm.
The main strength of iterative compression is that it allows to see the problem
from a different angle: The compression routine does not only have the problem
instance as input, but also a solution, which carries valuable structural informa-
tion on the input. Therefore, the design of a compression routine may be simpler
than designing a fixed-parameter algorithm for the original problem.

While embedding the compression routine into the iteration framework is
usually straightforward, finding the compression routine itself is not. It is not
even clear that a compression routine with useful running time exists even when
we already know a problem to be fixed-parameter tractable. Therefore, the art
of iterative compression typically lies in the design of the compression routine.
In many applications of iterative compression, the compression routine first ex-
haustively considers all possible intersection sets of the given solution and a po-
tentially smaller solution; elements in the intersection can be “discarded” from
the problem instance.3 Then, the remaining task is to find a smaller disjoint

solution.

Example CVD continued. For Cluster Vertex Deletion the compression
routine works as follows. Consider a smaller cvd-set S′ as a modification of
the larger cvd-set S for the graph G = (V, E). This modification retains some
vertices Y ( S as part of the solution set (that is, the vertices to be deleted),
while the other vertices X := S \ Y are replaced by new vertices from V \ S.
The idea is to try by brute force all 2|S| − 1 nontrivial partitions of S into these
two sets Y and X . For each such partition, the vertices from Y are immediately
deleted, since we already decided to take them into the cvd-set. In the resulting
instance G′ = (V ′, E′) := G[V \ Y ], it remains to find a smaller cvd-set that is
disjoint from X . This turns out to be a much easier task than finding a cvd-set
in general; in fact, it can be done in polynomial time using data reduction and
maximum matching.

The idea to try by brute force all nontrivial partitions of a given solution S

into two sets Y and X is applied for all the problems in this survey; thus,
we always describe the corresponding compression routines by showing how to
compute a smaller disjoint solution.

Compression for CVD. Recall that X is a cvd-set for G′, and the task is
to find a smaller cvd-set for G′ disjoint from X . First, we discard partitions
where X does not induce a cluster graph; these partitions cannot lead to a
solution since we fixed that none of the vertices in X would be deleted. Further,
the set R := V ′ \ X also induces a cluster graph since R = V \ S and S is a
cvd-set. Therefore, the following computational problem remains:

3 It depends on the concrete problem of how we “discard” these elements. For instance,
for a vertex deletion problem we may just remove the corresponding vertices.
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Fig. 1: (a) Data reduction in the compression routine. The white vertices in the
input instance are removed by the three data reduction rules. Each group of
encircled vertices corresponds to a vertex in the assignment problem (b). If a
group of encircled vertices is in X or if no vertex in this group has a neighbor
in X , then the corresponding vertex is black, otherwise, it is white.

CVD Compression
Instance: An undirected graph G = (V, E) and a vertex set X ⊆ V

such that G[X ] and G[V \ X ] are cluster graphs.
Task: Find a vertex set X ′ ⊆ V \ X such that G[V \ X ′] is a cluster
graph and |X ′| < |X |.

An example for a CVD Compression instance is shown in Figure 1a. In a first
step, this instance can be simplified by a series of simple data reduction rules;
their correctness is easy to see [32]:

1. Delete all vertices in R := V \ X that are adjacent to more than one clique
in G[X ].

2. Delete all vertices in R that are adjacent to some, but not all vertices of a
clique in G[X ].

3. Remove connected components that are cliques.

After these data reduction rules have been exhaustively applied, the instance is
much simplified: In each clique of G[R], we can divide the vertices into equiv-
alence classes according to their neighborhood in X ; each class then contains
either vertices adjacent to all vertices of a particular clique in G[X ], or the ver-
tices adjacent to no vertex in X (see Figure 1a). This classification is useful
because of the following.

Lemma 1. If there exists a solution for CVD Compression, then in the clus-

ter graph resulting by this solution, for each clique in G[R] the vertices of at

most one equivalence class are present.

Proof. Clearly, inside a clique, it is never useful to delete only some, but not all
vertices of an equivalence class, since if that led to a solution, we could always
re-add the deleted vertices without introducing new induced P3’s (which are the
forbidden substructure characterizing cluster graphs). Further, assume that for
a clique C in G[R] the vertices of two equivalence classes are present. Let u ∈ C
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and v ∈ C be a vertex from each equivalence class, respectively. Since u and v

are in different equivalence classes, they must have a different neighborhood
with respect to the cliques in G[X ]. Assume without loss of generality that v is
adjacent to all vertices of a clique C′ in G[X ]. Since u is in an other equivalence
class than v, u is not adjacent to any vertex of C′. Let w ∈ C′. The path uvw

forms an induced P3, contradicting our assumption. ⊓⊔

Due to Lemma 1, the remaining task for solving CVD Compression is to as-
sign each clique in G[R] to one of its equivalence classes (corresponding to the
preservation of this class, and the deletion of all vertices from the other classes
within the clique) or to nothing (corresponding to the complete deletion of the
clique). However, we cannot do this independently for each clique; we must not
choose two classes from different cliques in G[R] such that these two classes are
adjacent to the same clique in G[X ] since that would create an induced P3. This
assignment problem can be modelled as a weighted bipartite matching problem
in an auxiliary graph H , where each edge corresponds to a possible choice. The
graph H is constructed as follows (see Figure 1b):

1. Add a vertex for every clique in G[R] (white vertices).

2. Add a vertex for every clique in G[X ] (black vertices in X).

3. For a clique CX in G[X ] and a clique CR in G[R], add an edge between the
vertex for CX and the vertex for CR if there is an equivalence class in CR

containing a vertex adjacent to a vertex in CX . This edge corresponds to
choosing this class for CR and one assigns the number of vertices in this
class as its weight.

4. Add a vertex for each class in a clique CR that is not adjacent to a clique
in G[X ] (black vertices outside X), and connect it to the vertex represent-
ing CR. Again, this edge corresponds to choosing this class for CR and is
weighted with the number of vertices in this class.

Since we only added edges between black and white vertices, H is bipartite. The
task is now to find a maximum-weight bipartite matching, that is, a set of edges of
maximum weight where no two edges have an endpoint in common. To solve this
matching instance, we can use an algorithm for integer weighted matching with a
maximum weight of n [23], yielding a running time of O(m

√
n log n). If we apply

the data reduction rules in their given order, we can execute them in O(m) time.
Thus, we can solve CVD Compression in O(m

√
n log n) time. The number of

vertices in an intermediary solution S to be compressed is bounded from above
by k +1, because any such S consists of a size-at-most-k solution for a subgraph
of G plus a single vertex. In one iteration step, CVD Compression is thus
solved O(2k) times, and there are n iteration steps, yielding a total running time
of O(2k · mn3/2 log n). With some tricks based on problem kernelization, which
will not be explained here, this can be further improved to O(2kk6 log k + nm).

Theorem 1 ([32]). Cluster Vertex Deletion can be solved within a run-

ning time of O(2kk6 log k + nm).
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This iterative compression approach combined with matching techniques also
works for the vertex-weighted version of Cluster Vertex Deletion, yielding
an algorithm with a running time of O(2kk9 + nm) [32].

As we have seen for Cluster Vertex Deletion, the iterative part of
building up the graph vertex by vertex is relatively simple, but the problem-
specific compression step of applying data reduction and matching techniques is
more involved. In many applications of iterative compression, the iterative part
is carried out in the same manner, and data reduction techniques often play an
important role for the compression step.

3 Some Breakthroughs due to Iterative Compression

In this section, we survey recent breakthroughs in parameterized algorithmics
that all are based on a sophisticated use of iterative compression. We mainly
focus on describing the central ideas behind the respective compression routines.

3.1 Graph Bipartization

Definition and History. The NP-complete Graph Bipartization problem, also
known as Vertex Bipartization, Maximum Bipartite Induced Subgraph,
or Odd Cycle Transversal, is defined as follows.

Input: An undirected graph G = (V, E) and a nonnegative number k.
Question: Is there a vertex subset S ⊆ V with |S| ≤ k such that G[V \S]
is bipartite?

Graph Bipartization has applications ranging from VLSI design to computa-
tional biology (see, e.g., [34,45]). There is a polynomial-time approximation with
a factor of O(log n) [24], and there is an exact algorithm running in O(1.62n)
time [40]. Mahajan and Raman [35] explicitly mentioned the fixed-parameter
tractability of Graph Bipartization with respect to the parameter k as an
open problem, which was settled by Reed et al. [42], thereby introducing the
iterative compression technique. The running time of their approach is stated
as O(4k · knm), but with a better analysis and an algorithmic trick, it can been
improved to O(3k · nm) [29,30].

Compression Routine. In the following, we outline the basic idea of the compres-
sion routine due to Reed et al. [42]. We have as input an undirected graph G =
(V, E) and a vertex set X ⊆ V such that G[V \ X ] is bipartite. The question is
whether there exists a set X ′ with X ′ ⊆ V \X and |X ′| < |X | such that G[V \X ′]
is bipartite. Let I1 and I2 be the two partite sets of G[V \ X ]. The idea is to
construct an auxiliary graph corresponding to G: Replace every vertex v ∈ X

by two vertices v1, v2, deleting all edges incident to v. For every edge vw in G

with w ∈ V \ X , we add the edge v1w if w ∈ I2 and v2w if w ∈ I1. For every
edge vw with w ∈ X , we arbitrarily add the edge v1w2 or the edge v2w1. See
Figure 2 for an example. The idea behind that construction is to enforce that
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Fig. 2: (a) G with solution (encircled vertices); (b) Corresponding auxiliary
graph.

if there exists an odd cycle (a cycle with an odd number of edges) in G going
through a vertex a (e.g., the cycle (a, b, e) in Figure 2), then there exists a path
from a1 to a2 in the auxiliary graph. Note that a path from a1 to a2 in the
auxiliary graph only implies some odd cycle in G (but not necessarily contain-
ing a). Let NX := {v1, v2 | v ∈ X} be the set of the newly introduced vertices.
A partition (A, B) of NX is valid if for each vertex pair v1, v2 either v1 ∈ A

and v2 ∈ B or v1 ∈ B and v2 ∈ A. The intuitive idea of the compression routine
is to try to find a valid partition (A, B) such that all paths between A and B can
be obstructed by less than |X | vertices. These vertices also obstruct every odd
cycle in G (by the construction of the auxiliary graph). The following lemma,
which is a variation of Lemma 1 in [42] and will not be proven here, shows that
this approach is correct.

Lemma 2. If for any valid partition (A, B) of NX there are |X | vertex-disjoint

paths from A to B in the corresponding auxiliary graph, then there is no solu-

tion X ′ with X ′ ⊆ V \ X and |X ′| < |X |.

Using Lemma 2, we can enumerate in 2|X| steps all possible valid partitions (A, B)
of NX , and compute a vertex cut between (A, B) using maximum flow tech-
niques. If the vertex cut contains less than |X | vertices, then we return it as the
new solution X ′. The maximum flow can be computed in O(km) time [22], and
since |X | ≤ k+1 the overall running time of the compression routine is O(2k ·km).
With an algorithmic trick, which “recycles” the flow networks for each maximum
flow problem, one can get rid of the factor k in the running time [29]. Together
with the iteration and the partitioning needed for the compression routine, an
improved analysis, not described here, yields the following.

Theorem 2 ([42,29]). Graph Bipartization can be solved within a running

time of O(3k · nm).

Further Remarks. There exists another approach using vertex colorings to de-
scribe the Graph Bipartization algorithm [30]. The Graph Bipartization
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algorithm has also been heuristically improved and implemented [29,30].4 The
experiments on data from computational biology show that iterative compression
can outperform other methods by orders of magnitude. For example, an instance
originating from computational biology with 102 vertices and 307 edges can be
solved in 6248 seconds with an ILP approach, whereas an iterative compression
approach runs in 0.79 seconds, which can be further improved by algorithmic
tricks [29]. The iterative compression approach also works for the variant of
making a given graph bipartite by at most k edge deletions, and yields an al-
gorithm with a running time of O(2k · m2) [28]. This algorithm can be used
for Signed Graph Balancing, where experiments show that this approach
has about the same running time as approximation algorithms, while producing
exact solutions [31].5

The Almost 2-SAT problem is a generalization of Graph Bipartization.
It asks whether it is possible to delete at most k clauses from a Boolean formula
in conjunctive normal form with at most two literals per clause such that the re-
maining formula becomes satisfiable. Very recently, Razgon and O’Sullivan [41]
showed that Almost 2-SAT can be solved in O(15kk · m3) time, thus proving
it to be fixed-parameter tractable with respect to parameter k, which was an
open question stated by Mahajan and Raman [35]. This result also implies that
Vertex Cover parameterized above the size of a maximum matching M , that
is, the task to find a vertex cover of size at most |M | + k (“above guarantee
parameterization”) [37], is fixed-parameter tractable with respect to the param-
eter k, because it can be transformed to Almost 2-SAT [41] in f(k) · poly(n)
time.

3.2 Undirected Feedback Vertex Set

Definition and History. The NP-complete Undirected Feedback Vertex
Set (UFVS) problem is defined as follows.

Input: An undirected graph G = (V, E) and a nonnegative number k.
Question: Is there a feedback vertex set (fvs) S ⊆ V with |S| ≤ k, that
is, a set S whose deletion from G results in a forest?

UFVS has found applications in many fields, including deadlock prevention, pro-
gram verification, and Bayesian inference [18]. UFVS can be approximated to a
factor of 2 in polynomial time [1,4]. There is a simple and elegant randomized
algorithm [3] that solves UFVS in O(c4kk · n) time by finding a feedback vertex

set of size k with probability at least 1 − (1 − 4−k)c4k

for an arbitrary constant c.
A recent exact algorithm for UFVS has running time of O(1.7548n) [21]. As to
deterministic fixed-parameter algorithms, Bodlaender [7] and Downey and Fel-
lows [14] were the first to show that the problem is fixed-parameter tractable.

4 The source code of the Graph Bipartization solver and corresponding test data
are available from http://theinf1.informatik.uni-jena.de/occ.

5 The source code of the Signed Graph Balancing solver is available from
http://theinf1.informatik.uni-jena.de/bsg .
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In 2005, Dehne et al. [11] and Guo et al. [28] independently provided the first
algorithms, based on iterative compression, with running times of O(ck · nm)
with c ≈ 11. Finally, Chen et al. [8], also employing iterative compression, im-
proved the constant c to 5.

Compression Routine. In the following, we briefly describe the basic idea behind
the compression routine due to Chen et al. [8]. Herein, we have as input an
undirected graph G = (V, E) and an fvs X . The question is whether there exists
an fvs X ′ with |X ′| < |X | and X ′ ⊆ V \X . Observe that G can be divided into
two forests: The induced subgraph G[V \ X ] is clearly acyclic. Moreover, G[X ]
is also a forest consisting of at most |X | trees; otherwise, there would not exist
an fvs X ′ with X ∩ X ′ = ∅. Based on this observation, the key idea of the
compression routine is to merge these two forests into one by deleting as few
as possible vertices from V \ X ; that is, it considers every vertex v ∈ V \ X

and tries to move v from V \ X to X without introducing a cycle in G[X ].
Since a solution X ′ must be disjoint from X , we have to include v into X ′ if
its addition to X creates a cycle. If there is no cycle created by adding v to X ,
then make a trivial branch into two subcases, namely, (1) keeping X unchanged,
adding v to X ′, and deleting v from G or (2) extending X by v. In the latter case,
we assume that v is not part of a solution. More specifically, the compression
routine follows a search tree strategy which distinguishes the following cases:
First, if there is a vertex v ∈ V \ X that has two neighbors from the same tree
in G[X ], then add v to X ′ and delete v from G. This is clearly correct, since
moving v to X introduces cycles. Second, if the first case does not apply and
there is a vertex v ∈ V \ X that has at least two neighbors in X , then we know
that these neighbors are from different trees in G[X ] and, thus, G[X ∪ {v}] is
acyclic; we branch the search into two subcases as described above. Finally, if
the first two cases do not apply, then all vertices in V \ X have at most one
neighbor in X . We apply the following bypassing reduction rule to the leaves
of the forest G[V \ X ], until one the first two cases applies or V \ X = ∅. We
say that a graph G′ is obtained from G by bypassing a degree-2 vertex v in G

if G′ is obtained by first removing v and then adding a new edge between its two
neighbors. The following data reduction rule is trivially correct, because deleting
degree-2 vertices to destroy cycles is never the only best solution.

Bypassing reduction rule: Bypass all degree-2 vertices in G.

To analyze the running time of the compression routine, we have to bound the
search tree size. Since only the second case causes a branching into two subcases,
it remains to upper-bound the number of the applications of the second case.
We claim that this number is bounded by j + l, where j denotes the size of the
input set X and l denotes the number of trees in G[X ]. In the first subcase of
the branching caused by the second case, we add a vertex to X ′, which can only
happen at most j − 1 times, because we search an X ′ with |X ′| < |X |. The
second subcase adds vertex v to X . Since v has at least two neighbors in X

which are from different trees in G[X ] (the precondition of the second case), the
addition of v to X causes a merge of at least two trees and, thus, decreases the

9
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number of trees in G[X ]. Clearly, this can be done at most l times. Altogether,
in the branchings caused by the second case, we either decrease the number of
trees in G[X ] or add a vertex to X ′. The second case can apply less than j + l

times. Since j ≤ k + 1 and, thus, G[X ] has at most k + 1 trees, the search
tree has size O(22k), giving an overall running time of the compression routine
of O(4k · n2), where we need O(n2) time to apply the bypassing rule and to
check the applicability of the three cases. Together with the iteration and the
partitioning needed for the compression routine, one arrives at the following
theorem.

Theorem 3 ([8]). Undirected Feedback Vertex Set can be solved within

a running time of O(5kk · n2).

Further Remarks. The randomized algorithm by Becker et al. [3] is so elegant
and simple such that it seems to be the current method of choice for practically
computing an optimal undirected feedback vertex set; the current best itera-
tive compression approach is still slower and more complicated to implement.
The currently best problem kernel for UFVS has O(k2) vertices and edges [44].
Accepting a worse exponential base c, there is also a deterministic “linear-time
FPT” algorithm for UFVS running in O(ck · (m + n)) time [28].

3.3 Directed Feedback Vertex Set

Definition and History. The NP-complete Directed Feedback Vertex Set
(DFVS) problem is defined as follows.

Input: A directed graph G = (V, E) and a nonnegative number k.
Question: Is there a feedback vertex set (fvs) S ⊆ V with |S| ≤ k,
that is, a vertex set S whose deletion from G results in a graph with no
directed cycles?

DFVS has various applications such as deadlock prevention in operating sys-
tems and database systems, circuit testing, voting systems, and computational
biology [18]. DFVS can be approximated to a factor of O(log n log log n) in poly-
nomial time [16]. For about 15 years, it has been repeatedly stated as an open
question whether or not DFVS is fixed-parameter tractable with respect to the
parameter k. Very recently, Chen et al. [10] gave a fixed-parameter algorithm
with a running time of O(k!4kk3 · n4), thus answering this open question. Com-
paring with the result for UFVS, the particular difficulty in case of DFVS is
given by the fact that destroying all directed cycles not only leaves trees as in
the undirected case but leaves directed acyclic graphs, much more complicated
structures than trees. Thus, the result for UFVS might be interpreted as a first
“necessary” intellectual step before the result for DFVS was within reach.

Compression Routine. In the following, we briefly describe the idea behind the
compression routine due to Chen et al. [10]. Herein, we have as input a directed
graph G = (V, E) and an fvs X . The question is whether there exists an fvs X ′

10
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with |X ′| < |X | and X ′ ⊆ V \X . Consider an fvs X ′ disjoint from X in G. Since
there is no directed cycle in G[V \X ′], there must be a vertex u ∈ X such that for
each vertex v ∈ X there is no directed path from u to v in G[V \X ′] (this can be
easily seen: if there is a path from every vertex in X to at least one other vertex
in X , following such paths from vertex to vertex will end up visiting an already
visited vertex, yielding a directed cycle in G[V \X ′]). A repeated application of
this argument shows that there is an ordering u1, . . . , u|X| of the vertices in X

such that there is no directed path in G[V \ X ′] from ui to uj if i ≥ j. To find
the set X ′, the idea is now to try all |X |! orderings of the vertices in X , and, for
each ordering u1, . . . , u|X|, we compute X ′ such that there is no directed path
from ui to uj if i ≥ j in G[V \ X ′]. To this end, we split each vertex ui ∈ X

into two vertices si and ti such that all outgoing edges of ui are incident to si

and all incoming edges of ui are incident to ti. Then, the task is to find a vertex
separator X ′ between the vertices s1, . . . , s|X| and t1, . . . , t|X| such that there is
no path from si to tj if i ≥ j. This task can be solved by an algorithm for the
Skew Separator problem, which is defined as follows.

Instance: A directed graph G = (V, E), a parameter k, and pairwise
disjoint vertex subsets S1, . . . , Sl, T1, . . . , Tl such that there is no edge
going into a set Si for 1 ≤ i ≤ l and such that there is no edge going out
from a set Ti for 1 ≤ i ≤ l.
Task: Find a skew separator X ′ ⊆ V for G with |X ′| ≤ k, that is, a
vertex set X ′ such that there is no directed path from any vertex in Si

to any vertex in Tj in G[V \ X ′] if i ≥ j.

Skew Separator can be solved by a clever branching strategy in a running
time of O(4kk · n3) [10]. The corresponding algorithm is a directed variant of
an algorithm for the Minimum Node Multiway Cut problem on undirected
graphs [9], where the task is, given a graph G, a parameter k, and vertex-disjoint
terminal vertex sets, to delete at most k vertices such that there is no path be-
tween any two vertices of two different terminal sets. Using the algorithm for
Skew Separator, one solves the task to find a vertex separator X ′ by set-
ting Si := {si} and Ti := {ti} for all 1 ≤ i ≤ |X | and solving Skew Separator
in O(4kk · n3) time.

Next, we analyze the running time of the whole iterative compression ap-
proach. There are |X |! ≤ (k + 1)! orderings of the vertices in X , thus the al-
gorithm for Skew Separator is called at most (k + 1)! times. Altogether, the
compression routine runs in O(k!4kk2 · n3) time. With some relatively simple
analysis, it is possible to show that together with the iteration and the parti-
tioning needed for the compression routine we arrive at the following theorem.

Theorem 4 ([10]). Directed Feedback Vertex Set can be solved within

a running time of O(k!4kk3 · n4).

Further Remarks. The above algorithm for DFVS finds a direct application in
Kemeny voting systems for the problem of computing the Kemeny score in case
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of incomplete votes [5], and for the dual of the Longest Compatible Se-
quence problem [27]. Moreover, in the special case of DFVS where the input
graph is restricted to be a tournament (that is, a directed graph whose “under-
lying” undirected graph is complete), an iterative compression approach yields
an algorithm with a running time of O(2k · n2(log log n + k)) [13].

4 Discussion and Future Challenges

Discussion. Iterative compression is an algorithm design principle based on in-
duction. This elegant and simple approach is appealing and invites for further ap-
plications and extensions. On the one hand, iterative compression may strongly
benefit from a combination with kernelization and corresponding data reduction
rules (see, for instance, the case of Undirected Feedback Vertex Set in
Subsection 3.2), and, on the other hand, has also been employed for achieving
(Turing) kernelization results [12]. Iterative compression may also be used for
enumerating all minimal solutions of size at most k in FPT time, as the exam-
ple Undirected Feedback Vertex Set shows [28]. In many applications of
iterative compression, one often occurring running time bottleneck is that all
partitions of a size-k solution have to be considered in order to find a smaller-
size solution (see Section 2). This typically incurs an additional running time
factor of 2k. However, in some cases this factor can be avoided by proving a
guarantee that the improved solution can without loss of generality be assumed
to be disjoint from the old solution. An example for this is given by the Edge
Bipartization problem [28]. It appears to be fruitful to combine iterative com-
pression with efficient polynomial-time approximation algorithms. The idea is
that the compression routine may start right away with the solution provided
by a constant-factor approximation, saving time otherwise needed for the itera-
tion procedure [28]. Iterative compression is not only a tool for purely theoretical
algorithm design but has already proven practical usefulness in few experimental
studies [29,30,31]. One reason for this practical success also lies in the flexibility
of the use of the iterative compression routine [33]. It can be started on any
suboptimal initial solution to improve this solution. Moreover, it can be stopped
whenever the found solution is good enough. Finally, it should be mentioned that
the known applications of iterative compression have a strong focus on graph
modification problems with the goal to generate graphs with hereditary prop-
erties. It would be interesting to see more applications of iterative compression
outside this scenario, the case of Almost 2-Sat [41] meaning a first step.

First experimental results for iterative compression-based algorithms appear
quite encouraging. An implementation of the Graph Bipartization algorithm,
improved by heuristics, can solve all instances from a testbed from computa-
tional biology within minutes, whereas established methods are only able to
solve about half of the instances within reasonable time. For instance, in case
of Graph Bipartization instances of sizes up to 296 vertices and 1620 edges
could be solved within less than 4 minutes [29]. Further, an iterative compres-
sion based approach for the Balanced Subgraph problem, which generalizes
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Edge Bipartization, is able to find optimal solutions to instances for which
previously only approximate solutions could be given [31].

So far, the list of successful applications of iterative compression is impres-
sive but still clear in its range. Future research has to determine how far-ranging
applications of iterative compression can be found. Clearly, this survey only
sketched a few results achieved by iterative compression. One further sophis-
ticated and technically fairly demanding application of iterative compression
has been developed by Marx [36] to show that the problem to delete a minimum
number of vertices in order to make a graph chordal is fixed-parameter tractable.

Future Challenges. As already mentioned, there are close connections between
iterative compression and approximation algorithms as well as kernelization.
In both cases, there seems to be room for further fruitful explorations. A re-
cent paper makes a first attempt in linking iterative compression with exact
algorithms [20]. Another conceptually related field of research is that of reop-
timization [6]. There, the scenario is that one is given an instance of an opti-
mization problem together with an optimal solution, and one wants to find a
“high-quality” solution for a locally modified instance. Finding useful connec-
tions between this scenario and the compression scenario would be highly inter-
esting. Similarly, exploring connections to the paradigm of local search might be
promising. In addition, it would be interesting to investigate the connections be-
tween augmentation problems in the context of 0/1-integer linear programming
and iterative compression. In a nutshell, in these augmentation problem one is
given a vector c ∈ Zn, a feasible solution x over {0, 1}n, and the task is to find
out whether there is another feasible solution y such that c ·y > c ·x, or to assert
that no such y exists [43].

Another general issue of future research may address the inductive structure
of iterative compression. So far, all applications of iterative compression have a
pretty simple inductive structure, and there is no reason to believe that more
sophisticated structures might not be helpful. Finally, the experiences concern-
ing algorithm engineering results for compression-based methods are still very
limited and need to be extended.

We end this survey with a list of few open questions relating to concrete
computational problems. The solution of each of these would mean progress for
iterative compression and parameterized algorithmics at large.

– Directed Feedback Vertex Set now having been classified in terms
of parameterized complexity analysis using iterative compression, a natural
next step seems to be to attack the “more general” problems of Shortest
Common Supersequence and Smallest Common Supertree (see [17]
for definitions) in an analogous way. The parameterized complexity of these
problems is unsettled.

– Directed Feedback Vertex Set restricted to tournament graphs is solv-
able in 2k · nO(1) time using iterative compression [13]. An analogous result
for Directed Feedback Edge Set restricted to tournaments is missing.

– Edge Clique Cover is fixed-parameter tractable but the only known way
to achieve this is based on a simple, exponential-size kernelization [26]. Can
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iterative compression lead to a more efficient fixed-parameter algorithm for
Edge Clique Cover?

– Can iterative compression be used to show the fixed-parameter tractability
of the Correlation Clustering problem [2], a generalization of the fixed-
parameter tractable Cluster Editing problem [25]?

– Contig Scaffolding problems appear in the analysis of genomic data [39].
Again, iterative compression here might become a door opener for efficient
fixed-parameter algorithms, which so far are not known for these problems.

Acknowledgement: We are grateful to Christian Komusiewicz, Matthias Müller-
Hannemann, and Siavash Vahdati Daneshmand for constructive comments im-
proving the presentation of this paper.
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