
Proc. 34th MFCS, 2009

A Complexity Dichotomy for Finding

Disjoint Solutions of Vertex Deletion Problems

Michael R. Fellows1,⋆, Jiong Guo2,⋆⋆, Hannes Moser2,⋆ ⋆ ⋆, and
Rolf Niedermeier2

1 PC Research Unit, Office of DVC (Research), University of Newcastle,
Callaghan, NSW 2308, Australia

michael.fellows@newcastle.edu.au

2 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{jiong.guo,hannes.moser,rolf.niedermeier}@uni-jena.de

Abstract. We investigate the computational complexity of a general
“compression task” centrally occurring in the recently developed tech-
nique of iterative compression for exactly solving NP-hard minimization
problems. The core issue (particularly but not only motivated by itera-
tive compression) is to determine the computational complexity of, given
an already inclusion-minimal solution for an underlying (typically NP-
hard) vertex deletion problem in graphs, to find a better disjoint solu-
tion. The complexity of this task is so far lacking a systematic study. We
consider a large class of vertex deletion problems on undirected graphs
and show that, except for few cases which are polynomial-time solv-
able, the others are NP-complete. This class includes problems such as
Vertex Cover (here the corresponding compression task is decidable
in polynomial time) or Undirected Feedback Vertex Set (here the
corresponding compression task is NP-complete).

1 Introduction

With the introduction of the iterative compression by Reed et al. [17] in 2004,
parameterized complexity analysis has gained a new tool for showing fixed-
parameter tractability results for NP-hard minimization problems (cf. [9, 15]).
For instance, in 2008, applying iterative compression has led to major break-
throughs concerning the classification of the parameterized complexity of two
important problems. First, Chen et al. [4] showed that the NP-complete Di-

rected Feedback Vertex Set problem is fixed-parameter tractable. Sec-
ond, Razgon and O’Sullivan [16] proved that the NP-complete Almost 2-Sat
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problem is fixed-parameter tractable. Refer to the recent survey [9] for more on
iterative compression applied to exactly solving NP-hard minimization problems.

The central idea behind iterative compression is to employ a compression
routine. This is an algorithm that, given a problem instance and a corresponding
solution, either calculates a smaller solution or proves that the given solution
is of minimum size. Using a compression routine, one finds an optimal solution
to a problem by inductively building up the problem instance and iteratively
compressing intermediate solutions. Herein, the essential fact from the viewpoint
of parameterized complexity is that if the task performed by the compression
routine is fixed-parameter tractable, then so is the problem solved by means of
iterative compression. The main strength of iterative compression is that it allows
to see the problem from a different angle: The compression routine does not only
have the problem instance as input, but also a solution, which carries valuable
structural information. The design of a compression routine, therefore, may be
simpler than showing that the original problem is fixed-parameter tractable.

While embedding the compression routine into the iteration framework is
usually straightforward, finding the compression routine itself is not [9, 15]. For
many vertex deletion problems, a common approach to designing a compression
routine is to branch on the possible subsets of the uncompressed solution to
retain in the compressed solution. This leads to the following generic problem
that asks for a disjoint compressed solution:

Input: An instance of the underlying NP-hard problem and a solution S.3

Question: Is there a solution S′ such that S′ ∩ S = ∅ and |S′| < |S|?
We study the complexity of Compression Task depending on what the

underlying NP-hard problem is. The computational complexity of Compres-

sion Task, so far, remains widely unclassified. For instance, the fixed-parameter
tractability results (using iterative compression) for Vertex Bipartization [17]
or Undirected Feedback Vertex Set [3, 5, 8] leave open whether the respec-
tive Compression Task is NP-hard or polynomial-time solvable. By way of con-
trast, the fixed-parameter tractability result for the NP-complete Cluster Ver-

tex Deletion problem [10] is based on a polynomial-time algorithm for Com-

pression Task. Here, extending a framework attributed to Yannakakis [12], we
contribute a complete classification of Compression Task for a natural class
of vertex deletion problems (specified by a graph property Π), including all of
the above mentioned problems.

A graph property Π is a set of graphs; in the following, we say that a graph G

satisfies Π if G ∈ Π . A graph property Π is hereditary if it is closed under vertex
deletion, and non-trivial if it is satisfied by infinitely many graphs and it is not
satisfied by infinitely many graphs.

The classical Π-Vertex Deletion problem is defined as follows: for a non-
trivial hereditary graph property Π testable in polynomial time, given an undi-
rected graph G and a positive integer k, decide whether it is possible to delete
at most k vertices from the graph such that the resulting graph satisfies Π .

3 Here, the solution is a set. It is conceivable that the Compression Task can be
formulated also for other types of solutions.
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For example, Undirected Feedback Vertex Set corresponds to the case
that Π means “being cycle-free”. Yannakakis has shown that Π-Vertex Dele-

tion is NP-complete for any non-trivial hereditary graph property Π in general
graphs [12]. General vertex deletion problems have also been studied in terms of
their parameterized complexity [2, 11].

The Compression Task restricted to vertex deletion problems with prop-
erty Π , called Disjoint Π-Vertex Deletion, can be formulated as follows:

Input: An undirected graph G = (V, E) and a vertex subset S ⊆ V such
that G[V \ S] satisfies Π and S is inclusion-minimal under this property, that
is, for every proper subset S′ ⊂ S the graph G[V \ S′] does not satisfy Π .
Question: Is there a vertex subset S′ ⊆ V of size at most |S|, such that S∩S′ = ∅
and G[V \ S′] satisfies Π?

We replace the requirement |S′| < |S| in the definition of Compression

Task by |S′| ≤ |S| without changing the computational complexity, because the
corresponding hardness reductions (cf. Lemma 4) work for both cases, and the
last case might be of interest if S is already optimal. Moreover, we demand that S

is inclusion-minimal; any solution can be made inclusion-minimal in polynomial
time if Π can be tested in polynomial time. Thus, this requirement does not
change the complexity.

A graph property Π is determined by the components if it holds that if every
connected component of the graph satisfies Π , then so does the whole graph.
The central result of this work can be informally stated as follows:

Main Theorem: Let Π be any non-trivial hereditary graph property that is
determined by the components and that can be tested in polynomial time. Dis-

joint Π-Vertex Deletion is NP-complete unless Π is the set of all graphs
whose connected components are cliques or Π is the set of all graphs whose con-
nected components are cliques of at most s vertices, s ≥ 1—in these cases it is
polynomial-time solvable.4

The main theorem applies to many natural vertex deletion problems in
undirected graphs, including Vertex Cover, Bounded-Degree Deletion,
Undirected Feedback Vertex Set [3, 5, 8], Vertex Bipartization [17],
Cluster Vertex Deletion [10], Chordal Deletion [13], and Planar

Deletion [14]. Thus, except for Vertex Cover and Cluster Vertex Dele-

tion, all other problems have an NP-complete Compression Task.

Our original motivation for this work comes from the desire to better un-
derstand the limitations of the iterative compression technique. Beyond this,
Disjoint Π-Vertex Deletion also seems to be a natural and interesting
problem on its own: In combinatorial optimization, one often may be confronted
with finding alternative good solutions to already found ones. In the setting of
Disjoint Π-Vertex Deletion, this is put to the extreme in the sense that we
ask for solutions that are completely unrelated, that is, disjoint. For instance,
this demand also naturally occurs in the context of finding quasicliques [1]. Due
to the lack of space, some proofs are deferred to a full version of the paper.

4 There might exist other polynomial-time solvable cases for non-hereditary properties.
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Preliminaries. We only consider undirected graphs G = (V, E) with n := |V |
and m := |E|. We write V (G) and E(G) to denote, respectively, the vertex and
edge set of a graph G. For v ∈ V , let NG(v) := {u ∈ V | {u, v} ∈ E} and
let degG(v) := |NG(v)|. For S ⊆ V , let NG(S) :=

⋃
v∈S N(v) \ S. For S ⊆ V ,

let G[S] be the subgraph of G induced by S and G − S := G[V \ S]. For v ∈ V ,
let G− v := G[V \ {v}]. For a connected graph G, a cut-vertex is a vertex v ∈ V

such that G − v is not connected. A K3 is a complete graph on three vertices.
For s ≥ 1, the graph K1,s = ({u, v1, . . . , vs}, {{u, v1}, . . . , {u, vs}}) is a star. The
vertex u is the center of the star and the vertices v1, . . . , vs are the leaves of the
star.

If a graph H does not satisfy some hereditary property Π , then any super-
graph of H does not satisfy Π . We call H a forbidden subgraph for Π . For any
hereditary property Π there exists a set H of “minimal” forbidden induced sub-
graphs, that is, forbidden graphs for which every induced subgraph satisfies Π [7].
For this work, we restrict our attention to non-trivial hereditary properties that
are determined by the components. For the corresponding characterization of Π

by forbidden induced subgraphs, this means that the set of forbidden subgraphs
only contains connected graphs.

By simple counting arguments, there exist Disjoint Π-Vertex Deletion

problems that are not in NP. As Lewis and Yannakakis [12], we add the stipula-
tion that Π can be tested in polynomial time, hence the corresponding Disjoint

Π-Vertex Deletion problem is in NP, and our hardness results to come thus
will show that it is NP-complete.

A parameterized problem (I, k) is fixed-parameter tractable with respect to
the parameter k if it can be solved in f(k) · poly(|I|) time, where I is the input
instance and f is some computable function. The corresponding algorithm is
called fixed-parameter algorithm.

2 Polynomial-Time Solvable Cases

This section covers all cases of Disjoint Π-Vertex Deletion that can be
decided in polynomial time. The corresponding graph properties are as follows:

Definition 1. Let Πs, for s ≥ 1, be the graph property that contains all graphs
whose connected components are cliques of at most s vertices. Furthermore,
let Π∞ be the graph property that contains all graphs whose connected com-
ponents of G are cliques (of arbitrary size).

For instance, Π1, Π2, and Π∞ are the properties “being edgeless”, “being a
graph of maximum degree one”, and “every connected component is a clique
(of arbitrary size)”, respectively. The corresponding sets of forbidden induced
subgraphs consist of a single edge (Π1), a path on three vertices and a clique
on three vertices (Π2), and a path on three vertices (Π∞). In general, the set of
forbidden induced subgraphs of Πs for s ≥ 2 contains a path on three vertices and
an (s+1)-vertex clique. Summarizing, for each property Πs, s ≥ 1, and Π∞, the
corresponding set of forbidden induced subgraphs contains a star with at most
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two leaves, and these are clearly the only properties whose sets of forbidden
induced subgraphs contain a star with at most two leaves.

Theorem 1. Disjoint Π-Vertex Deletion is decidable in polynomial time
if Π = Πs, for some s ≥ 1, or if Π = Π∞.

Concerning property Π1, obviously, there can only exist a disjoint solu-
tion S′, S′ ∩ S = ∅, if S forms an independent set in G. Moreover, S′ must
contain every endpoint of each edge that has one endpoint in S and the other
endpoint in V \S. Hence, the input is a yes-instance iff S forms an independent
set and |NG(S)| ≤ |S|. This condition can be tested in polynomial time.

Lemma 1. Disjoint Π1-Vertex Deletion can be decided in polynomial time.

Disjoint Π∞-Vertex Deletion is equivalent to the decision version of
the compression step for Cluster Vertex Deletion [10].

Lemma 2 ([10]). Disjoint Π∞-Vertex Deletion can be decided in polyno-
mial time.

The polynomial-time decidability for the remaining properties Πs can be
proven with similar techniques as in the proof of Lemma 2.

Lemma 3. For each s ≥ 2, Disjoint Πs-Vertex Deletion can be decided
in polynomial time.

3 NP-Hardness Framework and Simple Proofs

Lewis and Yannakakis [12] showed that Π-Vertex Deletion for any non-trivial
hereditary property Π is NP-complete. Due to the similarity of Π-Vertex

Deletion to Disjoint Π-Vertex Deletion, in some simple cases we can
adapt the framework from [12].5 This section is mainly devoted to this framework
and how it is modified to partially use it for Disjoint Π-Vertex Deletion.

There are cases, however, where adapting this framework fails; this happens
when there is a star with at least three leaves among the family H of forbidden
induced subgraphs, because (as we will see later) a star with at least three leaves
does not permit to derive a given solution S for the graph that is constructed
by the reduction of the framework. For this case, we have to devise other NP-
hardness proofs (if there is a star with at most two leaves, then the problem is
polynomial-time decidable). Summarizing, we have to distinguish the following
three cases (recall that each graph in H is connected): (1) H does not contain
a star (NP-hard, this section, Theorem 2), (2) H contains a star with at least
three leaves (NP-hard, Section 4, Theorem 3), and (3) H contains a star with at
most two leaves (polynomial-time decidable, Section 2, Theorem 1).

The main result of this section covers all cases that can be proven by adapting
the framework by Yannakakis as described in the remainder of this section.

5 As made explicit in Lewis and Yannakakis’ paper [12], the parts of it we are referring
to in our work have been contributed by Yannakakis.
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Theorem 2. Let Π be a non-trivial hereditary property that is determined by the
components and let H be the corresponding set of all forbidden induced subgraphs.
If H contains no star, then Disjoint Π-Vertex Deletion is NP-hard.

The Framework by Yannakakis and its Limitations. In the following, we briefly
describe the reduction by Yannakakis [12], which shows that any vertex deletion
problem with non-trivial hereditary graph property is NP-hard. Since the hered-
itary graph properties considered in this paper are assumed to be determined by
the components, we present a variant that is restricted to such properties, that
is, the forbidden induced subgraphs shall be connected.

Preliminaries. Let H be the set of forbidden induced subgraphs that corre-
spond to the non-trivial hereditary property Π that is determined by its compo-
nents. An important concept for the framework is the notion of α-sequences [12].

Definition 2 (α-sequence). For a connected graph H ∈ H, if H is 1-connected,
then take a cut-vertex c and sort the components of H−c according to their size.
If H is not 1-connected, then let c be an arbitrary vertex (in this case, H − c has
just one connected component). Sorting the connected components of H − c with
respect to their sizes gives a sequence α = (n1, . . . , ni), where n1 ≥ . . . ≥ ni. The
sequence depends on the choice of c. The α-sequence of H, α(H), is a sequence
which yields a lexicographically smallest such sequence α.

Let H ∈ H be a graph with lexicographically smallest α-sequence among
all graphs in H. Note that every induced subgraph of H has a lexicographically
smaller α-sequence than H . Since Π is satisfied by all independent sets, the
connected graph H must contain at least two vertices, thus a largest component J

of H − c contains at least one vertex. Let d be an arbitrary vertex in J , and
let H ′ be the graph resulting by removing all vertices in J from H , and let J ′

be the graph induced by V (J) ∪ {c} in H .

Reduction. The reduction by Yannakakis [12] from the NP-complete Ver-

tex Cover6 problem works as follows. Let G be an instance of Vertex Cover.
For every vertex v in G create a copy of H ′ and identify c and v. Replace every
edge {u, v} in G by a copy of J ′, identifying c with u and d with v. Let G′ be
the resulting graph.

Correctness. The graph G has a size-k vertex cover if and only if G′ has a
size-k vertex set that obstructs all forbidden induced subgraphs H in G′:

(⇒) If A is a vertex cover of G, then S′ := A also obstructs all graphs
in H: Every connected component of G′ − S′ is either (1) a copy of H ′ − c

or (2) a copy of H ′ together with several copies of J ′, each with either c or d

deleted. In the latter case, the copy of H ′ and the copies of J ′ intersect exactly
in one vertex of V (G). Let C be such a connected component and let v be the
described vertex. In case (1), α(H ′ − c) is lexicographically smaller than α(H)

6 Given a graph G = (V, E) and k ≥ 0, decide whether there exists a set S ⊆ V of
size at most k such that each edge has at least one endpoint in S.
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since H ′−c is a subgraph of H . In case (2), v is a cut-vertex and the components
of C − v can be divided into a copy of H ′ − c and several copies of J with one
vertex deleted. Since the latter type of components has less than |V (J)| vertices,
the cut-vertex v gives an α-sequence for C which is lexicographically smaller
than the α-sequence of H . Thus, the connected components in G′ − S′ have
a smaller α-sequence than H , and because H is a forbidden induced subgraph
with lexicographically smallest α-sequence, these connected components do not
contain forbidden induced subgraphs.

(⇐) If S′ is a solution for H-Deletion, then one can determine a vertex
cover A for G: for each w ∈ S′, if w is in a copy of H ′ (possibly w ∈ V (G)), then
add vertex c of that copy of H ′ to A, and if w is in a copy of J ′ (where w 6∈ V (G)),
then add vertex c of that copy of J ′ to A. Obviously, |A| ≤ |S′|. Suppose that
there exists an edge {u, v} in G− A. Then, S′ neither contains any vertex from
the two copies of H ′ corresponding to the vertices u and v nor from the copy of J ′

that replaced the edge {u, v} in the construction of G′. Hence G′ − A contains
a copy of H , a contradiction. Therefore, A is a vertex cover for G.

Limitations. In some cases, a very similar reduction principle can be applied
for Disjoint Π-Vertex Deletion. We simply have to show that there exists
an H-obstruction set S in G′ with the only restriction that S does not contain
any vertex from V (G). Then, in principle, we can use the same arguments as
above. However, for some cases this approach fails; for instance, if J ′ is a clique
and some graph of H is contained in G, then this forbidden induced subgraph,
which also exists in G′, can only be obstructed by vertices in V (G). For example,
this happens when Π is the property “being cycle-free” (Feedback Vertex

Set): H contains all cycles, and the graph H with the smallest α-sequence is K3.
One can deal with this situation by reducing from K3-free graphs, and using the
graph with the smallest α-sequence among all K3-free graphs in H , as shown in
the proof of Lemma 5. The same type of problem, however, also occurs if H is a
star. In this case, each connected component of H−c is an isolated vertex. Thus,
the vertex d has to be one of these vertices, and G and therefore G′ might contain
a forbidden induced subgraph with lexicographically higher α-sequence than H .
This induced subgraph cannot be obstructed by a set S that is not allowed to
contain any vertex from V (G). In this case, the framework by Yannakakis cannot
be used and we have to devise other reduction techniques (Section 4).

New Proofs Based on the Reduction Framework by Yannakakis. Recall that we
assume here that the set of forbidden induced subgraph corresponding to Π

contains no star. We have to distinguish between the cases that (1) all forbidden
induced subgraphs contain a K3 (see Lemma 4), and that (2) not all forbidden
induced subgraph contain a K3 (see Lemma 5).

Lemma 4. If the set H of forbidden induced subgraphs corresponding to Π con-
tains only graphs that contain a K3, then Disjoint Π-Vertex Deletion is
NP-hard.

Proof. The proof is by reduction from the NP-complete Vertex Cover on K3-
free graphs [6]. Let (G, k) be an instance of Vertex Cover, where G is K3-free.
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First, construct a graph G′ using the reduction scheme by Yannakakis. Greedily
compute a minimal H-obstruction set S1 for G′ such that S1 ∩ V (G) = ∅. Such
a set S1 always exists, since G is K3-free and, therefore, does not contain any
forbidden induced subgraph.

It remains to take care of the size of the new solution S′; recall that Disjoint

Π-Vertex Deletion asks for a solution S′ such that |S′| ≤ |S|. First, suppose
that k ≤ |S1|. Informally speaking, we have to force that only k vertices out of
the |S1| available vertices can be used in G′ to obstruct all forbidden induced
subgraphs. Let H , c, J , J ′, and d be defined as in the reduction scheme. We
add a padding gadget C constructed as follows to G′. Add a new vertex w

and |S1|−k+1 copies of H to G′, identify the vertex d of each newly added copy
of H with w, and let S := S1 ∪{w}. The gadget C is obviously connected and w

is a cut-vertex in C. The vertex w obstructs all forbidden induced subgraphs
in C, because deleting w (and, thus, d) from each copy of H in C leaves a graph
with lexicographically smaller α-sequence (witnessed by c in each copy of H).
Hence, S is a minimal H-obstruction set for G′.

An H-obstruction set S′ for G′ with S′ ∩ S = ∅ must contain at least one
vertex in each copy of H in C, thus S′ must contain at least |S1| − k + 1 ver-
tices of C; putting into S′ the vertex c of each copy of H in C obstructs every
forbidden induced subgraph in H : every connected component of C − S′ either
is a copy of H − c or consists of |S1| − k + 1 copies of J that pairwise overlap
in vertex w. In the latter case, w is a cut-vertex witnessing that each remain-
ing connected component has size smaller than J , yielding a lexicographically
smaller α-sequence. This shows that S′, in order to obstruct all forbidden in-
duced subgraphs in C, contains at least |S1|−k+1 vertices. Since S = S1∪{w},
there remain at most |S| − |S1| + k − 1 = k vertices to obstruct all forbidden
induced subgraphs in G′ − V (C).

If |S1| < k, then construct C in the same manner with k − |S1| + 1 copies
of H and let S be the union of S1 and the vertex c of each copy of H . Then,
the new solution S′ can obstruct all forbidden induced subgraphs in C with the
vertex w, and there are k − |S1| + 1 + |S1| − 1 = k vertices left to obstruct all
forbidden induced subgraphs in G′ − V (C).

By these arguments and the reduction scheme, G has a size-k vertex cover if
and only if G′ has a H-obstruction set S′ with S′ ∩ S = ∅ and |S′| ≤ |S|. ⊓⊔

In the following, assume that not all forbidden induced subgraphs contain
a K3, let H′ ⊆ H be the set of all forbidden induced subgraphs that do not
contain a K3, and let H be a forbidden induced subgraph with lexicographically
smallest α-sequence among all graphs in H′.

Lemma 5. If the set H of forbidden induced subgraphs corresponding to Π con-
tains no stars, but other graphs that do not contain a K3, then Disjoint Π-

Vertex Deletion is NP-hard.
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4 Refined Reduction Strategies

Here, we present NP-hardness proofs if H is a star with at least three leaves.
The main result of this section is as follows.

Theorem 3. Let Π be a non-trivial hereditary graph property that is determined
by the components and let H be the corresponding set of all forbidden induced
subgraphs. If H contains a star with at least three leaves, then Disjoint Π-

Vertex Deletion is NP-hard.

Note that a star has a smaller α-sequence than any other forbidden induced
subgraph that is not a star, and there is only one star in H, since the graphs
in H are inclusion-minimal. Therefore, if H contains a star, then the graph with
smallest α-sequence is necessarily the star in H. Let H be the star in H.

The proof of Theorem 3 is based on the following case distinction. (1) H is a
star with at least four leaves (Lemma 6), or (2) H is a star with three leaves. In
the latter case, we distinguish the following two subcases: (2a) H contains a P4

(Lemma 7), and (2b) H does not contain a P4 (Lemma 8).

Lemma 6. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H, and if H has at least four leaves, then Disjoint

Π-Vertex Deletion is NP-hard.

Next, we show the NP-hardness of the case that the smallest graph in the
set of forbidden induced subgraphs is a star with three leaves. In this case, a
reduction from Vertex Cover seems less promising, since the Vertex Cover

instance we reduce from contains vertices of degree three and therefore copies of
the forbidden induced star with three leaves. Hence, we use 3-CNF-SAT. First,
we consider the case that the path on four vertices is also forbidden.

Lemma 7. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H, and if H has three leaves and H also contains the
path on four vertices, then Disjoint Π-Vertex Deletion is NP-hard.

Proof. The proof is by reduction from 3-CNF-SAT. Let F = c1 ∧ · · · ∧ cm be a
3-CNF formula over a variable set X = {x1, . . . , xn}. We denote the kth literal
in clause cj by lkj , for 1 ≤ k ≤ 3. An example of the following construction
is given in Figure 1. Starting with an empty graph G and S := ∅, construct
an instance (G, S) for Disjoint Π-Vertex Deletion as follows. For each
variable xi, introduce a cycle Xi of 12m vertices (variable gadget), add every
second vertex on Xi to S, and label all the other vertices on the cycle alternately
with “+” and “−”. For each clause cj , add a star Cj with three leaves (clause
gadget) and add its center vertex to S. Each of the three leaves of Cj corresponds
to a literal in cj , and each leaf is connected to a variable gadget as follows.
Suppose that lkj is a literal xi or ¬xi, and let ak be the leaf of Cj corresponding

to lkj . Add a star with three leaves (connection gadget), identify one leaf with ai,

identify another leaf with an unused vertex 7 on Xi with label “+” if lkj is positive

7 This means that no vertex of an other connection gadget has been identified with
this vertex on Xi, that is, it is of degree two.
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A

a1

B u1

w1

v1

C2C1

(x1 ∨ ¬x2 ∨ ¬x3)(¬x1 ∨ x2 ∨ x3)

X1

−+
+ X2

−+
+ X3

−+
+

Fig. 1: Example for the reduction in the proof of Lemma 7 for the 3-CNF-SAT
formula (¬x1∨x2∨x3)∧(x1∨¬x2∨¬x3). For illustration, one minimality gadget
is labeled with A and one connection gadget is labeled with B. Furthermore, for
the connection gadget B the vertices are named according to the definitions
of ak, uk, vk and wk in the proof of Lemma 7 for k = 1. The vertices in the given
solution S are gray, the vertices in the disjoint solution S′, corresponding to the
satisfying truth assignment x1 = true, x2 = true, x3 = false, are black.

and with an unused vertex on Xi with label “−” if lkj is negative, and add the
remaining leaf to S. Finally, for each remaining unused vertex v labeled “+” or
“−” in G, add a star with three leaves (minimality gadget), add two of its leaves
to S, and add an edge between the center and v. This concludes the construction.

Obviously, G− S only contains paths on three vertices as connected compo-
nents (cf. Figure 1), that is, G−S satisfies Π . Moreover, S is minimal, that is, for
any v ∈ S, G− (S \ {v}) does not satisfy Π . Let q be the number of minimality
gadgets. We show that formula F has a satisfying truth assignment if and only if
there exists a size-(q+3nm+3m) set S′, S′∩S = ∅, that obstructs all forbidden
induced subgraphs in G. Analogously to the proof of Lemma 6, the construction
can be modified (to “correct” the sizes of S and S′) by adding a padding gadget
based on stars with three leaves. This straightforward modification is omitted.

(⇒) We defer the proof of this direction to a full version of the paper.

(⇐) Let S′, S′∩S = ∅, be a size-(q+3nm+3m) vertex set that obstructs every
forbidden induced subgraph in G. We may assume that S′ does not contain any
degree-one vertex in G (since a degree-one vertex in S′ could be simply replaced
by its neighbor). Recall that the set of forbidden induced subgraphs contains
the star with three leaves and the path on four vertices. Each minimality gadget
is a star with three leaves, and since we assumed that no degree-one vertex is
in S′, its center vertex must be in S′. Hence, S′ contains exactly q vertices of
the minimality gadgets. Since P4s are forbidden, at least every fourth vertex on
the cycle of each variable gadget has to be in S′. However, we will see that S′

contains exactly three vertices for each clause (thus, 3m vertices for all clauses),
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and these vertices cannot be vertices on any variable gadget. Therefore, for each
variable gadget Xi, the set S′ must contain exactly every fourth vertex of Xi (in
order to obtain a total number of 3mn vertices in S′ for all n variable gadgets),
thus S′ either contains all vertices labeled “+” or all vertices labeled “−”. If S′

contains all vertices labeled “+”, then we set xi := true, if S′ contains all vertices
labeled “−”, then we set xi := false. It remains to show that the assignment
defined in this way is a satisfying truth assignment for the formula F .

For a clause gadget Cj , and for each leaf ak of Cj corresponding to literal lkj ,
let uk be the center of the corresponding connection gadget, vk be the degree-
one neighbor of uk, and wk be the neighbor of uk on the variable gadget Xi, for
some 1 ≤ i ≤ n (cf. Figure 1). There is a P4 containing the center of Cj , together
with ak, uk, and vk. Since the center of Cj is in S, the set S′ has to contain at
least three vertices to obstruct the three P4s corresponding to Cj (one for each
leaf). Thus, for all clauses, there are at least 3m vertices in S′ that obstruct
these P4s. In total, S′ contains q + 3nm + 3m vertices. Therefore, there are
exactly 3m vertices in S′ that obstruct these P4s. Thus, for a clause gadget Cj ,
for each leaf ak, either ak ∈ S′ or uk ∈ S′. Which case applies depends on which
vertices from Xi are in S′: if wk 6∈ S′, then wk together with uk and its two
neighbors on Xi induce a star with three leaves, thus uk ∈ S′. If wk ∈ S′, then
either ak ∈ S′ or uk ∈ S′. If wk ∈ S′ and uk ∈ S′, however, then one can simply
remove uk from S′ and add ak instead. After that, S′ still obstructs all forbidden
induced subgraphs. Since S′ obstructs all forbidden induced subgraphs, at least
one leaf ak of Cj must be in S′, which implies that wk ∈ S′. Let Xi be the variable
gadget that contains wk. If wk has label “+”, then xi = true by the definition
of the assignment, and by construction lkj = xi is a positive literal, hence cj is

satisfied. If wk has label “−”, then xi = false, and, by construction, lkj = ¬xi is
a negative literal, hence cj is satisfied. Summarizing, for every clause there is at
least one true literal and thus the constructed truth assignment satisfies F . ⊓⊔

Finally, we consider the case that the path on four vertices is not forbidden.

Lemma 8. If the set H of forbidden induced subgraphs corresponding to prop-
erty Π contains a star H, and if H has three leaves and H does not contain the
path on four vertices, then Disjoint Π-Vertex Deletion is NP-hard.

5 Outlook

As indicated in the introductory section, there are important problems amenable
to iterative compression that do not fall into the problem class studied here.
Among these, in particular, we have Directed Feedback Vertex Set and
Almost 2-Sat. Hence, it would be interesting to further generalize our results
to other problem classes, among these also being vertex deletion problems on
directed graphs or bipartite graphs and edge deletion problems. Our work here
has left open the case that a forbidden subgraph may consist of more than one
connected component. Finally, one could explore to parameterize Disjoint Π-

Vertex Deletion by the number of vertices by which S′ should at least differ
from S.



Proc. 34th MFCS, 2009

References

[1] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detec-
tion. In Proc. 5th LATIN, volume 2286 of LNCS, pages 598–612. Springer,
2002.

[2] L. Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Inf. Process. Lett., 58(4):171–176, 1996.

[3] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved algorithms
for feedback vertex set problems. J. Comput. System Sci., 74(7):1188–1198,
2008.

[4] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5),
2008. Article 21, 19 pages.

[5] F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and
K. Stevens. An O(2O(k)n3) FPT algorithm for the undirected feedback
vertex set problem. Theory Comput. Syst., 41(3):479–492, 2007.

[6] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[7] D. L. Greenwell, R. L. Hemminger, and J. B. Klerlein. Forbidden subgraphs.
In Proc. 4th CGTC, pages 389–394, 1973.
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