A Complexity Dichotomy for Finding Disjoint Solutions of Ve rtex
Deletion Problems 12

Michael R. Fellows, Charles Darwin University
Jiong Guo, Universitit des Saarlandes

Hannes Moser, Friedrich-Schiller-Universitiit Jena
Rolf Niedermeier, TU Berlin

We investigate the computational complexity of a general “compression task” centrally occurring in the re-
cently developed technique of iterative compression for exactly solving NP-hard minimization problems. The
core issue (particularly but not only motivated by iterative compression) is to determine the computational
complexity of the following task: given an already inclusion-minimal solution for an underlying (typically
NP-hard) vertex deletion problem in graphs, find a smaller disjoint solution. The complexity of this task is
so far lacking a systematic study. We consider a large class of vertex deletion problems on undirected graphs
and show that a few cases are polynomial-time solvable, and the others are NP-hard. The considered class
of vertex deletion problems includes VERTEX COVER (where the compression task is polynomial-time) and
UNDIRECTED FEEDBACK VERTEX SET (where the compression task is NP-complete).

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Iterative compression, computational complexity, parameterized com-
plexity, graph algorithms, hereditary graph properties, vertex deletion problems

ACM Reference Format:

Fellows, M. R., Guo, J., Moser, H., Niedermeier, R. 2011. A Complexity Dichotomy for Finding Disjoint
Solutions of Vertex Deletion Problems. ACM V, N, Article A (January YYYY), 23 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1A preliminary version of this paper appears in the proceedings of the 84th International Symposium
on Mathematical Foundations of Computer Science (MFCS ’09), volume 5734 of LNCS, pages 319-330,
Springer, 2009.

2Main work was done while all authors were staying at the University of Jena.

The first author was supported by the Australian Research Council. Work done while staying in Jena as a
recipient of a Research Award from the Alexander von Humboldt Foundation, Bonn, Germany. The second
author was partially supported by the DFG, PALG, NI 369/8. The third author was supported by the DFG,
project AREG, NI 369/9.

Authors’ addresses: M. R. Fellows, School of Engineering and Information Technology, Charles Darwin Uni-
versity, Darwin, Northern Territory 0909, Australia; email: michael.fellows@cdu.edu.au; J. Guo, Univer-
sitat des Saarlandes, Campus E 1.4, D-66123 Saarbriicken, Germany; email: jguo@mmci.uni-saarland.de;
H. Moser, Institut fiir Informatik, Friedrich-Schiller-Universitiat Jena, Ernst-Abbe-Platz 2, D-07743 Jena,
Germany; email: hannes.moser@uni-jena.de; R. Niedermeier, Institut fiir Softwaretechnik und Theoretische
Informatik, TU Berlin, D-10587 Berlin, Germany; email: rolf.niedermeier@tu-berlin.de

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© YYYY ACM 0000-0000/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Michael R. Fellows et al.

1. INTRODUCTION

The introduction of the iterative compression technique by Reed et al. [2004] provided
parameterized algorithm design with a general new tool for showing fixed-parameter
tractability results for NP-hard minimization problems (cf. [Guo et al. 2009; Nieder-
meier 2006]). In 2008, the technique led to major breakthroughs concerning the clas-
sification of the parameterized complexity of two important problems. First, Chen and
Liu et al. [2008] showed that the NP-complete DIRECTED FEEDBACK VERTEX SET
problem is fixed-parameter tractable. Second, Razgon and O’Sullivan [2009] proved
that the NP-complete ALMOST 2-SAT problem is fixed-parameter tractable. Refer to
the recent survey by Guo et al. [2009] for more on applications of the iterative com-
pression technique to exactly solving NP-hard minimization problems.

The central idea behind iterative compression is to employ a compression routine.
This is an algorithm that, given a problem instance and a corresponding solution, ei-
ther calculates a smaller solution or proves that the given solution is of minimum size.
Using a compression routine, one finds an optimal solution to a problem by inductively
building up the problem instance and iteratively compressing intermediate solutions.
Herein, the essential fact from the viewpoint of parameterized complexity is that if
the task performed by the compression routine is fixed-parameter tractable, then so is
the problem solved by means of iterative compression. The main strength of iterative
compression is that it allows us to see the problem from a different angle: the com-
pression routine has as input not only an “intermediate” instance (e.g., a graph), but
also an “intermediate” solution (e.g., a vertex cover) that provides valuable structural
information.

While embedding the compression routine into the iteration framework is usually
straightforward, finding the compression routine itself is not [Guo et al. 2009; Nieder-
meier 2006]. For many vertex deletion problems, a common approach to designing a
compression routine is to branch on the possible subsets of the uncompressed solution
that are to be retained in the compressed solution. This leads to the following generic
problem that asks for a disjoint compressed solution:

COMPRESSION TASK
Input: An instance of the underlying NP-hard problem and a solution X.
Question: Is there a solution X’ such that X’ N X = and | X'| < |X|?

We study the complexity of this COMPRESSION TASK as it varies according to the
underlying NP-hard vertex deletion problem. The computational complexity of COM-
PRESSION TASK has not yet been systematically investigated—this is our main ob-
jective. For example, the fixed-parameter tractability results (using iterative compres-
sion) for VERTEX BIPARTIZATION [Reed et al. 2004] or UNDIRECTED FEEDBACK VER-
TEX SET [Chen et al. 2008; Dehne et al. 2007; Guo et al. 2006] leave open whether
the respective COMPRESSION TASK is NP-hard or polynomial-time solvable. By way of
contrast, the fixed-parameter tractability result for the NP-complete CLUSTER VER-
TEX DELETION problem [Hiiffner et al. 2010] is based on a polynomial-time algorithm
for the COMPRESSION TASK for that problem. Here, extending a framework attributed
to Yannakakis [Lewis and Yannakakis 1980], we describe a complete classification of
COMPRESSION TASK for a wide class of vertex deletion problems (specified by a graph
property II), including all of the above mentioned specific problems.

A graph property 11 is a set of graphs; in the following, we say that a graph G satis-
fies I1 if G € II. A graph property II is hereditary if it is closed under vertex deletion,
and non-trivial if it is satisfied by infinitely many graphs and it is not satisfied by
infinitely many graphs.

The classical II-VERTEX DELETION problem is defined as follows.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:3

II-VERTEX DELETION

Input: An undirected graph G = (V, F) and a nonnegative integer k.
Question: Is there a vertex subset S C V of size at most £ such that
G-Sell?

For example, UNDIRECTED FEEDBACK VERTEX SET corresponds to the case that II
means “being cycle-free”. Yannakakis has shown that II-VERTEX DELETION is NP-
complete for any non-trivial hereditary graph property II in general graphs [Lewis and
Yannakakis 1980]. General vertex deletion problems have also been studied in terms
of their parameterized complexity, where the parameter is the number of vertices to be
deleted [Cai 1996] (studying finite forbidden sets). The family of dual problems, that is,
subgraph problems for hereditary graph properties, have been studied with respect to
their parameterized complexity as well, where the parameter is the number of vertices
in the (induced) subgraph [Khot and Raman 2002].

The COMPRESSION TASK restricted to the vertex deletion problem for a graph prop-
erty II, called DISJOINT II-VERTEX DELETION, can be formulated as follows:

DISJOINT II-VERTEX DELETION
Input: An undirected graph G = (V, E) and a vertex subset X C V such
that G[X] € II, G[V \ X] € II, and X is inclusion-minimal under this property,
that is, for every proper subset X’ C X the graph G[V \ X'] does not satisfy II.
Question: Is there a vertex subset X’ C V of size less than |X| such that X N
X' =0 and G[V \ X'] satisfies II?

We demand that G[X] € II since, otherwise, there cannot exist a solution X’ dis-
joint from X. We also demand that X is inclusion-minimal; any solution can be made
inclusion-minimal in polynomial time if II can be tested in polynomial time. Thus, in
these cases, this requirement does not change the complexity.

A graph property Il is determined by the components if it holds that if every con-
nected component of the graph satisfies II, then so does the whole graph. For exam-
ple, the graph property “cycle-free” is determined by the components, but the graph
property “at least five cycle-free components” is obviously not determined by the com-
ponents. The central result of this work can be informally stated as follows:

MAIN THEOREM: Let II be any non-trivial hereditary graph property that is de-
termined by the components and that can be tested in polynomial time. DISJOINT II-
VERTEX DELETION is NP-complete unless 11 is the set of all graphs whose connected
components are cliques or 11 is the set of all graphs whose connected components are
cliques of at most s vertices, s > 1—in these cases it is polynomial-time solvable.?

This theorem applies to many natural vertex deletion problems in undi-
rected graphs, including VERTEX COVER, BOUNDED-DEGREE VERTEX DELE-
TION [Nishimura et al. 2005; Moser et al. 2009], UNDIRECTED FEEDBACK VER-
TEX SET [Guo et al. 2006; Dehne et al. 2007; Chen et al. 2008], VERTEX BIPAR-
TIZATION [Reed et al. 2004], CLUSTER VERTEX DELETION [Hiiffner et al. 2010],
CHORDAL DELETION [Marx 2010], and PLANAR DELETION [Marx and Schlotter
2007]. Among these problems, except for VERTEX COVER, CLUSTER VERTEX DELE-
TION, and BOUNDED-DEGREE-1 VERTEX DELETION, all other problems have NP-
complete DISJOINT II-VERTEX DELETION associated compression tasks.

Our original motivation for analyzing the complexity of DISJOINT II-VERTEX DELE-
TION comes from the desire to better understand the limitations of the iterative com-
pression technique. Beyond this, DISJOINT II-VERTEX DELETION also seems to be

3There might exist other polynomial-time solvable cases for non-hereditary properties.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 Michael R. Fellows et al.

a natural and interesting problem on its own: In combinatorial optimization, one of-
ten may be confronted with finding alternative good solutions to ones already found.
In the setting of DISJOINT II-VERTEX DELETION, this is put to the extreme in the
sense that we ask for solutions that are completely unrelated, that is, disjoint. For in-
stance, this demand also naturally occurs in the context of finding quasicliques [Abello
et al. 2002]. The computational complexity of finding alternative solutions with less
strict demands has been considered in various contexts. Among others, the complexity
of finding alternative solutions has been studied with respect to the HAMILTON CY-
CLE problem [Papadimitriou 1994; Krawczyk 1999]. More generally, local search is a
very general technique in combinatorial optimization where one “explores” the space
of possible solutions by moving from one solution to a “close” better solution (if possi-
ble) [Aarts and Lenstra 1997]. However, this does not ask for disjointness of solutions.
Finally, let us mention that there are also ties to the recent framework of reoptimiza-
tion problems [Béckenhauer et al. 2008]—there, one deals with the recomputation of
a solution for a locally modified input instance. In all these settings one asks how
the knowledge of a solution can provide structural information that helps in finding
another one.

The remainder of this paper provides the proof of the main theorem. It is orga-
nized as follows. After some preliminaries (Section 2), we describe a general iterative
compression framework for vertex deletion problems and show how the compression
task DISJOINT II-VERTEX DELETION is employed (Section 3). After that, we show
the announced complexity dichotomy (Section 4). Section 4 is roughly organized as
follows. We first address the polynomial-time solvable cases (corresponding to certain
graph properties II) of DISJOINT II-VERTEX DELETION (Section 4.1). Then, extending
a framework of Lewis and Yannakakis [1980], we provide several different construc-
tions for showing the NP-completeness of all other DISJOINT II-VERTEX DELETION
problems, yielding our complexity dichotomy (Sections 4.2 and 4.3). We end with some
challenges for future work (Section 5).

2. PRELIMINARIES

We only consider undirected graphs G = (V,E) with n := |V| and m := |E|. We
write V(G) and F(G) to denote, respectively, the vertex and edge set of a graph G.
For v € V, let Ng(v) := {u € V | {u,v} € E} and let deg(v) := |[Ng(v)|. For S C V,
let Ng(S) := U,es N(v) \ S. For S C V, let G[S] be the subgraph of G induced by S
and G— S := GV \S]. Forv € V,let G —v := G[V \ {v}]. For a connected graph G,
a cut-vertex is a vertex v € V such that G — v is not connected. A K; for ¢t > 3 is a
complete graph on t vertices. A P, for t > 2 is a path on ¢ vertices. For s > 1, the
graph K1 s = ({u,v1,...,vs}, {{w,v1},...,{u,vs}}) is a star. The vertex u is the center
of the star and the vertices v1,...,v, are the leaves of the star.

If a graph H does not satisfy some hereditary property II, then any supergraph
of H does not satisfy II. We call H a forbidden subgraph for II. For any hereditary
property II there exists a set H of “minimal” forbidden induced subgraphs, that is, for-
bidden graphs for which every induced subgraph satisfies II [Greenwell et al. 1973].
For this work, we restrict our attention to non-trivial hereditary properties that are
determined by the components. For the corresponding characterization of II by forbid-
den induced subgraphs, this means that the set of forbidden subgraphs contains only
connected graphs.

Since the number of sets of graphs is uncountable, but the set of algorithms can be
enumerated and is therefore countable, it follows that there exist DISJOINT II-VERTEX
DELETION problems that are not in NP. As in Lewis and Yannakakis [1980], we add
the stipulation that IT can be tested in polynomial time, hence the corresponding D1s-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A5

Algorithm: ITERATE (G, k)
Input: An undirected graph G and a nonnegative integer k.
Output: A II-deletion set of size at most k, or “no-instance”.

3 while V' £V do

selecta vertexv € V\ V/

Vi —V'U{v}

S — SuU{v}

S «— COoMPRESS(G[V'], S)

if |S| > k then return “no-instance”
9 return S

o ~NOoolh~

Fig. 1: Pseudo-code of the algorithm to solve II-VERTEX DELETION via iterative com-
pression. The pseudo-code of the algorithm COMPRESS is given in Fig. 2.

JOINT II-VERTEX DELETION problem is in NP, and our NP-hardness results to come
will thus show NP-completeness.

A parameterized problem (I, k) is fixed-parameter tractable with respect to the pa-
rameter k if it can be solved in f(k) - poly(|I]) time, where I is the input instance and f
is some computable function. The corresponding algorithm is called a fixed-parameter
algorithm.

3. ITERATIVE COMPRESSION AND THE COMPRESSION TASK

In this section, we give a general iterative compression framework for II-VERTEX
DELETION, where II is a non-trivial hereditary property that is determined by the
components.

First, we show how to employ the compression routine.

Iteration. In the following, we call a solution for II-VERTEX DELETION a II-deletion
set. The pseudo-code of the iteration algorithm is given in Fig. 1. We start with empty
vertex subsets V' = () and S =) (lines 1 and 2); clearly, an empty set is a II-deletion
set for an empty graph. Iterating over all graph vertices, step by step we add one
vertex v € V' \ V' to both V' and S (lines 4-6). Then S is still a II-deletion set for G[V].
In each step we try to find a smaller TI-deletion set for G[V’] by applying a compression
routine (line 7). It takes the graph G[V’] and the II-deletion set S for G[V’], and returns
a smaller II-deletion set for G[V’], or proves that S is optimal (by returning a IT-deletion
set of the same size). Note that a smaller IT-deletion set for G[V’] is always a minimum
one and has size |S| — 1, since S \ {v} is a minimum II-deletion set for G[V' \ {v}], and
a minimum II-deletion set for G[V'] cannot be smaller than a minimum II-deletion set
for G[V'\ {v}].* Therefore, it is a loop invariant that the compressed II-deletion set S
is a minimum-size II-deletion set for G[V’]. If |S| > k (line 8), then we can conclude
that G does not have a II-deletion set of size at most k. Since eventually V' = V, we
obtain a II-deletion set of size at most & for G once the algorithm returns S (line 9).

Compression. It remains to describe the compression routine. Given an undirected
graph G and a solution S for II-VERTEX DELETION, the compression routine finds
a smaller solution for G or proves that the solution S is of minimum size. To this end,
we consider all partitions of S into one part to keep in the solution and one part to

4In other words, II-VERTEX DELETION behaves monotonically with respect to adding vertices. This follows
from the fact that the graph property II is hereditary.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Michael R. Fellows et al.

Algorithm: COMPRESS (G, X)
Input: An undirected graph G and a solution S
Output: A smaller solution 5, if it exists, otherwise S.

1 foreachY C S
X« S\Y
G —G-Y
if G[X] € II then
X' «— COMPRESSDISJOINT (G', X)
if | X'| < |X| then return X' UY
7 return S

OO WN

Fig. 2: Pseudo-code of the compression routine for II-VERTEX DELETION. Algorithm
COMPRESSDISJOINT solves DISJOINT II-VERTEX DELETION.

exchange. The compression routine works as follows. See Fig. 2 for the corresponding
pseudo-code. Consider a smaller II-deletion set S’ as a modification of the larger II-
deletion set S for the graph G = (V| E). This modification retains some vertices Y C S
as part of the solution set (that is, the vertices to be deleted), while the other ver-
tices X := S\Y are replaced by new vertices from V'\ S. The idea is to try by brute force
all 2/5I — 1 nontrivial partitions of S into these two sets Y and X. For each such parti-
tion, the vertices from Y are immediately deleted from S (line 2) and G (line 3), since we
have already decided to take them into the II-deletion set. If G[X] ¢ II, then we know
that there can be no solution S’ with S’ NS = Y; hence, we only proceed if G[X] € II
(line 4). In the remaining instance G’ := G — Y, it remains to find a smaller II-deletion
set X’ that is disjoint from X (line 5). This task, DISJOINT II-VERTEX DELETION, is
solved by a disjoint compression routine (COMPRESSDISJOINT). If such a smaller so-
lution is found, it is returned (line 6). Otherwise, after trying all possible partitions
without finding a smaller solution, we know that the solution S is optimal and return
it (line 7).
The running time of the whole algorithm can be stated as follows.

LEMMA 3.1. If DISJOINT II-VERTEX DELETION can be solved in t, time and the
property 11 can be tested in t, time, then TI-VERTEX DELETION can be solved in O(2F -
(tl + tg)n) time.

PROOF. The loop of algorithm ITERATE in Fig. 1 (lines 3-8) can be executed at
most n times. In each iteration, the algorithm COMPRESS in Fig. 2 is called (line 7).
After that, ITERATE aborts in line 8 if |S| > k. Therefore, in the next iteration of the
loop, S has size at most k& before adding v to it in line 6 of ITERATE. Thus, S has size
at most k£ + 1 if COMPRESS is called. Therefore, COMPRESS executes its loop (lines 2—6
in Fig. 2) at most 2+ — 1 times. COMPRESS needs ¢, time to test whether G[X] € II
(line 4) and t; time to compress the solution X (line 5). The remaining instructions in
lines 2, 3, and 6, can be executed in linear time in the worst case. Thus, each execution
of COMPRESS needs O(2" - (t; + t»)) time. In total, this sums up to a running time
of O(2% - (t; + t2)n) for algorithm ITERATE. O

The idea to try by brute force all nontrivial partitions of a given solution S into
two sets Y and X is applied for all known applications of iterative compression for
II-VERTEX DELETION problems, that is, VERTEX BIPARTIZATION [Reed et al. 2004],
UNDIRECTED FEEDBACK VERTEX SET [Guo et al. 2006; Dehne et al. 2007; Chen
et al. 2008], VERTEX COVER [Guo 2006], and CLUSTER VERTEX DELETION [Hiiffner
et al. 2010]. The main difference between these problems lies in the disjoint compres-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A7

sion routine. The disjoint compression routines for the first two problems have expo-
nential worst-case running time; for VERTEX BIPARTIZATION DISJOINT II-VERTEX
DELETION is solved via a brute-force approach combined with maximum flow tech-
niques [Reed et al. 2004], and for UNDIRECTED FEEDBACK VERTEX SET it is solved
with a bounded search tree approach combined with data reduction rules [Chen et al.
2008]. The disjoint compression routine for CLUSTER VERTEX DELETION runs in poly-
nomial time and is based on matching techniques, and the disjoint compression routine
for VERTEX COVER is a trivial algorithm applying the simple observation that a dis-
joint solution X’ must contain all neighbors of X. From Lemma 3.1 it follows directly
that for VERTEX COVER and CLUSTER VERTEX DELETION there exists an algorithm
with running time 2* - poly(n). The results in this paper are driven by the following
question: For which other vertex deletion problems is DISJOINT II-VERTEX DELETION
polynomial-time solvable?

In the next section, we answer this question by establishing a complexity dichotomy
for DISJOINT II-VERTEX DELETION for any non-trivial hereditary property II that is
determined by the components.

4. COMPLEXITY DICHOTOMY FOR THE COMPRESSION TASK

This section is dedicated to the proof of the following theorem. This is the main the-
orem stated in the introduction with the difference that here a graph property II is
characterized via its corresponding set of forbidden induced subgraphs. In Section 4.1
we argue that the formulations used here and in the introduction are equivalent.

THEOREM 4.1. Let II be any non-trivial hereditary graph property that is deter-
mined by the components and that can be tested in polynomial time, and let H be
the set of minimal forbidden induced subgraphs corresponding to 1. DISJOINT II-
VERTEX DELETION is NP-complete unless H contains P or P3, and in these cases it
is polynomial-time solvable.

4.1. The Polynomial-Time Solvable Cases

This section covers all cases of DISJOINT II-VERTEX DELETION that can be solved
in polynomial time. These correspond to each graph property IT whose set of minimal
forbidden induced subgraphs H contains P, (a single edge) or P; (a path on three ver-
tices). Recall that we restricted our attention to hereditary graph properties that are
determined by the components, that is, all graphs in H are connected.

We shortly describe the “structure” of the corresponding graph properties. If H con-
tains P,, then this is the only forbidden induced subgraph, that is, H = {P}, since
any other connected graph contains P, (recall that H can be assumed to be a set of
minimal forbidden induced subgraphs). Hence, II is the set of all graphs with no edges,
that is, it is the graph property “being edgeless”. If H contains no P, but Ps;, then H
can additionally contain exactly one clique, since any other connected graph on at least
four vertices contains P3 as induced subgraph. If H contains only P;, then II is the set
of all cluster graphs, that is, graphs whose connected components form cliques. If H
contains P; and a clique K, then the corresponding graph property II is the set of all
graphs whose connected components form cliques of size at most ¢ — 1.

In the following, we name these graph properties according to the following defini-
tion.

Definition 4.2. Let Il;, for s > 1, be the graph property that consists of all graphs
whose connected components are cliques of at most s vertices. Furthermore, let I1., be
the graph property that consists of all graphs whose connected components of G are
cliques (of arbitrary size).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Michael R. Fellows et al.

(a) DISJOINT Ilo.-VERTEX DELETION (b) The assignment problem
instance

Fig. 3: (a) Data reduction in the disjoint compression routine. The gray vertices in the
input instance are deleted by the data reduction rules. The black vertices correspond
to a minimum solution X/ (determined by a solution for the assignment problem, see
below). Each circled group of vertices corresponds to an edge in the assignment prob-
lem (b). If a circled group of vertices is in X or if no vertex in this group has a neighbor
in X, then the corresponding vertex is black, otherwise, it is white. The bold edges
show the maximum matching that corresponds to the minimum solution X7.

For instance, II;, II;, and II,, are the properties “being edgeless”, “being a graph of
maximum degree one”, and “being a cluster graph”, respectively. As described above,
the corresponding sets of minimal forbidden induced subgraphs consist of: P (IIy), P;
and K3 (Ily), and P; (I1,). In general, the set of minimal forbidden induced subgraphs
of II; for s > 2 consists of P; and K,,;. Summarizing, for each property Il;, s > 1,
and II,, the corresponding set of minimal forbidden induced subgraphs contains a star
with at most two leaves (in other words, P, or P3), and these are the only properties
whose sets of minimal forbidden induced subgraphs contain a star with at most two
leaves.

THEOREM 4.3. DISJOINT II-VERTEX DELETION can be solved in polynomial time
if 11 =11, for some s > 1, or if 11 = Il.

For property II;, the disjoint solution X’ must contain every endpoint of each edge
that has one endpoint in the given solution X and the other endpoint in V' \ X. Hence,
the input is a yes-instance if and only if X forms an independent set and [N (X)| < | X].
This condition can be tested in linear time by scanning through all edges incident to
each vertex in X.

LEMMA 4.4. DISJOINT II;-VERTEX DELETION can be solved in O(n + m) time,

DISJOINT II,,-VERTEX DELETION is equivalent to the disjoint compression task of
CLUSTER VERTEX DELETION, that can be solved in O(m+/n-logn) time [Hiiffner et al.
2010]. In order to make the description of the complexity dichotomy self-contained, we
provide a very short version of the proof of the following lemma by Hiiffner et al. [2010];
this proof exhibits the main technique, which we will adapt for the proof of Lemma 4.6,
that shows the polynomial-time solvability for the remaining properties II, for s > 2.

LEMMA 4.5 ([HUFFNER ET AL. 2010]). DISJOINT II,,-VERTEX DELETION can be
solved in O(m+/n -logn) time.

PROOF. Recall that the set of minimal forbidden induced subgraphs corresponding
to Il only contains one element, namely P;. We describe an algorithm that solves
DISJOINT Il .-VERTEX DELETION. An example for a DISJOINT II,.-VERTEX DELE-
TION instance is shown in Fig. 3a. The algorithm begins by computing all vertices that
necessarily have to be in X’; if there exists an induced P; in G such that exactly one
vertex v of that P; is in R := V \ X (thus, the remaining two vertices of the P; are

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:9

in X), then we call v a necessary vertex. Obviously, all necessary vertices have to be
in X'. Thus, a first data reduction rule computes the set of necessary vertices, adds
them to an initially empty set X, and deletes the necessary vertices from the graph G
and from the set R. After that, a second data reduction rule deletes connected com-
ponents that are cliques from G, from R, and from X; the soundness of this rule is
obvious. In the following, let (G, X) be the remaining instance after deleting all nec-
essary vertices and isolated cliques. The set X contains all necessary vertices, thus
it remains to compute an optimal solution X/ for (G, X); X’ := X{ U X} is then a
minimum-size solution for our input instance.

The reduced instance (G, k) is much simplified: In each clique of G[R], we can divide
the vertices into equivalence classes according to their neighborhood in X; each class
then contains either vertices adjacent to all vertices of a particular clique in G[X], or
the vertices adjacent to no vertex in X (see Fig. 3a), otherwise, there would be a neces-
sary vertex and the first data reduction rule above would apply. This classification is
useful because of the following:

Claim. If there exists a solution for DISJOINT Il.,-VERTEX DELETION, then in the
cluster graph resulting by this solution, each clique in G|R)] consists of vertices of at
most one equivalence class.

Proof of Claim. Clearly, inside a clique, it is never useful to delete only some, but not
all vertices of an equivalence class, since if that led to a solution, we could always re-
add the deleted vertices without introducing new induced P;’s. Further, assume that
for a clique C in G[R] the vertices of two equivalence classes are present. Let u € C
and v € C be a vertex from each equivalence class, respectively. Since « and v are in
different equivalence classes, they must have a different neighborhood with respect to
the cliques in G[X]. Assume without loss of generality that v is adjacent to all vertices
of a clique C’ in G[X]. Since v is in an other equivalence class than v, u is not adjacent
to any vertex of C’. Let w € C’. The path uvw forms an induced Ps, contradicting our
assumption and showing the claim.

Due to this claim, the remaining task for solving DISJOINT II,,-VERTEX DELETION
is to assign each clique in G[R] to one of its equivalence classes (corresponding to the
preservation of this class, and the deletion of all vertices from the other classes within
the clique) or to do nothing (corresponding to the complete deletion of the clique). How-
ever, we cannot do this independently for each clique; we must not choose two classes
from different cliques in G[R] such that these two classes are adjacent to the same
clique in G[X] since that would create an induced Ps. This assignment problem can
be modeled as a weighted bipartite matching problem in an auxiliary graph H, where
each edge corresponds to a possible choice. The graph H is constructed as follows (see
Fig. 3b):

(1) Add a vertex for every clique in G[R] (white vertices).

(2) Add a vertex for every clique in G[X] (black vertices in X).

(3) For a clique Cx in G[X]| and a clique Cr in G[R], add an edge between the vertex
for Cx and the vertex for Cp if there is an equivalence class in C'r containing a
vertex adjacent to a vertex in C'x. This edge corresponds to choosing this class for Cr
and one assigns the number of vertices in this class as its weight.

(4) Add a black vertex for each class in a clique Cp that is not adjacent to the cliques
in G[X] (black vertices outside X), and connect it to the vertex representing Ck.
Again, this edge corresponds to choosing this class for Cr and is weighted with the
number of vertices in this class.

Since we only added edges between black and white vertices, H is bipartite. The task
is now to find a maximum-weight bipartite matching, that is, a set of edges of maxi-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Michael R. Fellows et al.

mum weight where no two edges have an endpoint in common. To solve this matching
instance, we can use an algorithm for integer-weighted matching [Gabow and Tarjan
1989] with a maximum weight of n (since a class can contain at most n vertices), yield-
ing a running time of O(my/nlogn). The set X} can be directly constructed from a
maximum matching; it contains all vertices in equivalence classes in G[R] that cor-
respond to edges not chosen by the matching in H (see Fig. 3). If we apply the data
reduction rules in their given order, we can execute them in O(m) time. Obviously, the
input instance is a yes-instance if and only if | X|| + | X}| < |X|. Thus, we can solve
DISJOINT II,.-VERTEX DELETION in O(m+/nlogn) time. 0O

It remains to show the polynomial-time solvability for the remaining properties II,.
The technique is similar.

LEMMA 4.6. For each s > 2, DISJOINT II,-VERTEX DELETION can be solved
in O(m+/nlogn) time.

PROOF. Let (G, X) be the input instance for DISJOINT II,-VERTEX DELETION. Re-
call that G[X] is a collection of cliques and the set of minimal forbidden induced sub-
graphs corresponding to Il is P53 and a clique of s + 1 vertices; hence, every connected
component of G — X is a clique of at most s vertices.

We describe an algorithm that finds a minimum-size vertex set X’ such that XNX’ =
() and such that G — X’ € Il;, or returns “no-instance”. This algorithm is similar to the
one for DISJOINT II.-VERTEX DELETION in the proof of Lemma 4.5, but additionally
takes into account the forbidden clique of s+ 1 vertices. Moreover, every vertex in V' \ X
that is adjacent to one vertex in a connected component in G[X] is already adjacent to
all vertices in this connected component.

The algorithm starts by computing all vertices that necessarily have to be in X': if
there exists a forbidden induced subgraph F in G such that exactly one vertex v of F’
isin R := V \ X (thus, all remaining vertices of F' are in X), then we call v a necessary
vertex. Obviously, all necessary vertices have to be in X’. Thus, a first data reduction
rule computes the set of necessary vertices, adds them to an initially empty set X7,
and deletes the necessary vertices from G. This can be easily accomplished by first
finding and deleting all necessary vertices due to the forbidden P; (as in the proof of
Lemma 4.5), and then finding and deleting all necessary vertices due to the forbidden
clique of s + 1 vertices (clearly, the neighborhood of every s-vertex clique in G[X] is
a set of necessary vertices due to the forbidden clique). Then, consider the connected
components C' in the graph reduced by the first rule. For each C that is a clique, a
second data reduction rule adds |V(C)| — s arbitrary vertices from V(C) N R to X}
if [V(C)| > s (there are always sufficiently many vertices to choose from, since G[X]
only contains cliques of size at most s), and deletes C' from the graph. This reduction
rule is correct, because for a connected component that is a clique of more than s
vertices it does not matter which vertices are deleted, as there is no connection to the
rest of the graph.

In the following, let (G, X) be the remaining instance after exhaustively apply-
ing the two data reduction rules. As in the proof of Lemma 4.5, a minimum-size
set XJ, X! N X = (), containing a vertex of every induced path on three vertices and
every clique of s + 1 vertices, can be obtained with matching techniques. The main
difference is that if a clique in G|R] is present in the cluster graph G — X', then it
is not necessarily the case that all vertices of that clique are present due to the size
constraint s. This size constraint, however, can be encoded in the edge weights of the
corresponding assignment problem. The construction of H is the same as in the proof
of Lemma 4.5 except for the weight of an edge between the vertex for a clique Cx
in G[X] and the vertex for a clique Cr in G — X (assuming that there is an equiva-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A1l

(a) DISJOINT II4-VERTEX DELETION in- (b) The assignment problem
stance

Fig. 4: (a) Instance (G, X), preprocessed as described in the proof of Lemma 4.6, for s =
4. The black vertices are in a minimum solution X}. Each group of encircled vertices
corresponds to an edge in the assignment problem (b). The edges in the assignment
problem are weighted with the number of vertices that do not have to be taken into X7
if the corresponding edge is chosen to be in the matching. The bold edges show the
maximum matching that corresponds to the minimum solution X}.

lence class in C'r that contains a vertex adjacent to Cx): the weight of the edge is set
to min {s — |V(Cx)|,t}, where t is the number of vertices in the corresponding equiva-
lence class in Cg. If the edge is in a maximum matching of H, and if t < s — |V(Cx)|,
then the argument is as in the proof of Lemma 4.5 and no vertex of the corresponding
class in Cr is in XJ; however, if ¢ > s — |[V(Cx)|, then this still means that the corre-
sponding class of Cg is chosen, but since together with the vertices in Cx there are
more than s vertices, one has to add all but s — |V(Cx)| vertices of this class to XJ.
Consider Fig. 4 for an example of such an instance (G, X) and the corresponding as-
signment problem.

The data reduction rules can be performed in O(m) time, and the matching algo-
rithm needs O(m+/nlogn) time (see the proof of Lemma 4.5). O

4.2. NP-Hardness Framework and Simple Proofs

Lewis and Yannakakis [1980] showed that II-VERTEX DELETION for any non-trivial
hereditary property II is NP-complete. Due to the similarity of II-VERTEX DELETION
to DISJOINT II-VERTEX DELETION, in some simple cases we can adapt the framework
from Lewis and Yannakakis [1980].5 This section is mainly devoted to this framework
and how it can be modified to partially address the complexity of DISJOINT II-VERTEX
DELETION.

There are cases, however, where our adaption fails; this happens when there is a
star with at least three leaves among the family H of minimal forbidden induced sub-
graphs corresponding to II. For this case, we have to devise other NP-hardness proofs
(if there is a star with at most two leaves, then the problem is polynomial-time solv-
able). Summarizing, we have to distinguish the following three cases (recall that each
graph in H is connected, because II is determined by the components):

(1) H does not contain a star (NP-hard, this section, Theorem 4.7), and

(2) H contains a star with at least three leaves (NP-hard, Section 4.3, Theorem 4.12),
and

(3) H contains a star with at most two leaves (that is, P, or Ps3; polynomial-time solv-
able, Section 4.1, Theorem 4.3).

5As made explicit in Lewis and Yannakakis’ paper [Lewis and Yannakakis 1980], the parts of it we are
referring to in our work have been contributed by Yannakakis. That is why we refer to it in the following as
“the framework of Yannakakis”.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Michael R. Fellows et al.

Fig. 5: Connected graph H with cut-vertex ¢ and some vertex d in a largest connected
component J of H — ¢. Moreover, the graphs H' = H —V(J) and J' = H[V(J)U{c}] are
illustrated.

The main result of this section covers all cases that can be proven by adapting the
framework of Yannakakis.

THEOREM 4.7. Let 11 be a non-trivial hereditary property that is determined by
the components and let H be the corresponding set of all minimal forbidden induced
subgraphs. If H contains no star, then DISJOINT II-VERTEX DELETION is NP-hard.

4.2.1. The Framework of Yannakakis. In the following, we briefly describe the reduction
by Yannakakis [Lewis and Yannakakis 1980], showing that any vertex deletion prob-
lem for a non-trivial hereditary graph property is NP-hard. Since the hereditary graph
properties we consider are assumed to be determined by the components, we present a
variant that is restricted to such properties, that is, the forbidden induced subgraphs
are connected.

Preliminaries. Let H be the set of minimal forbidden induced subgraphs that corre-
spond to the non-trivial hereditary property IT that is determined by its components.
In the following, we call a vertex subset X such that G — X € II a H-obstruction set
in G (since it obstructs every forbidden induced subgraph in). An important concept
for the framework is the notion of a-sequences [Lewis and Yannakakis 1980].

Definition 4.8 ((a-sequence)). For a connected graph H € H, if H is 1-connected,
then take a cut-vertex c; otherwise, then let ¢ be an arbitrary vertex (in this case, H —c
has just one connected component). Sorting the connected components of H —c decreas-
ingly with respect to their sizes gives a sequence o = (nq,...,n;), where ny > ... > n,.
The sequence depends on the choice of c¢. The a-sequence of H, a(H), is a sequence
which is lexicographically smallest among all such sequences a.

Let H € H be a graph with the lexicographically smallest a-sequence among all
graphs in H, and let ¢ € V(H) be a vertex that yields such a lexicographically small-
est a-sequence. Note that every proper induced subgraph of H has a lexicographically
smaller a-sequence than H. Since II is satisfied by all edge-less graphs (I is deter-
mined by the components, thus it contains all edge-less graphs), the connected graph H
must contain at least two vertices, thus a largest component J of H —c contains at least
one vertex. Let d be an arbitrary vertex in .J, and let H' be the graph resulting by re-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:13

"
‘
v °°‘

Fig. 6: Example for a reduction from VERTEX COVER. Left: VERTEX COVER instance
with a vertex cover A (black vertices). Right: Corresponding II-VERTEX DELETION
instance G’ constructed by the framework of Yannakakis, together with a solution X
(black vertices) corresponding to the vertex cover A. The gray area marks a connected
component in G'— X corresponding to case (2) in the correctness proof with cut-vertex v.

moving all vertices in J from H, and let J’ be the subgraph of H induced by V' (J)U{c}.
See Fig. 5 for an example.

Reduction. The reduction by Yannakakis [Lewis and Yannakakis 1980] from the NP-
complete VERTEX COVER problem works as follows. Let G be an instance of VERTEX
COVER. For every vertex v in GG create a copy of H' and identify ¢ and v. Replace every
edge {u, v} in G by a copy of J', identifying ¢ with v and d with v. Let G’ be the resulting
graph. See Fig. 6 for an example of the reduction.

Correctness. The graph G has a size-k vertex cover if and only if G’ has a size-k
vertex set that obstructs the set of forbidden induced subgraphs H in G’:

(=) If A is a vertex cover of G, then X’ := A also obstructs all graphs in H: Every
connected component of G’ — X' is either

(1) a connected component of a copy of H' — c or
(2) a copy of H' together with several copies of .J/, each with ¢ or d deleted.

Let C be a connected component of G’ — X'. In case (1), a(H’ — ¢) is lexicographically
smaller than «(H) since H' — c is a subgraph of H. In case (2), the copy of H’ and the
copies of J' intersect exactly in one vertex v of V(G). Hence, v is a cut-vertex and the
components of C' — v can be divided into a copy of H' — ¢ and several copies of J with
one vertex deleted. Since the latter type of components has less than |V (J)| vertices,
the cut-vertex v gives an a-sequence for C' which is lexicographically smaller than
the a-sequence of H (see also Fig. 6). As a consequence, the connected components
in G’ — X’ have a smaller a-sequence than H, and because H is a forbidden induced
subgraph with lexicographically smallest a-sequence, these connected components do
not contain forbidden induced subgraphs.

(<) If X’ is a solution for [I-VERTEX DELETION, then one can determine a vertex
cover A for G as follows: for each w € X', if w is in a copy of H’ (possibly w € V(G)),
then add vertex ¢ of that copy of H' to A, and if w is in a copy of J' (where w ¢ V(G)),
then add vertex c of that copy of J' to A. Obviously, |A| < |X’|. Suppose that there exists
an edge {u, v} in G— A. Then, by construction of A, X' neither contains any vertex from
the two copies of H’ corresponding to the vertices u and v nor from the copy of J’ that

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:l14 Michael R. Fellows et al.

replaced the edge {u, v} in the construction of G’. Hence G’ — X’ contains a copy of H,
a contradiction. Therefore, A is a vertex cover for G.

Limitations. In order to modify the reduction from Section 4.2.1 for DISJOINT II-
VERTEX DELETION, the main difficulty lies in the construction of an old solution X
such that X does not prevent the “equivalence argument” of the reduction. In other
words, one has to construct an H-obstruction set X in G’ with the restriction that X
does not contain any vertex from V(G). In some cases the set X can be constructed in
a straight-forward way and, thus, the same argument as in Section 4.2.1 can be used.

However, if J’ is a clique and some graph H of H is contained in G, then H is also
contained in G’ and can only be obstructed by deleting vertices from V(G) and there
is no obvious construction of such a set X. The worst case of this problem occurs when
we have a star as the graph H in H that has the smallest a-sequence. In this case,
J' is simply an edge and each connected component of H — ¢ is an isolated vertex (¢
is the center of the star). Thus, the vertex d has to be one of these vertices, and G
and, therefore, G’ might contain a forbidden induced subgraph with lexicographically
higher a-sequence than H. This induced subgraph cannot be obstructed by a set X
with XNV(G) = 0. To cope with this problem, we distinguish cases based on whether H
contains a star or not.

If there is no star in H, then we slightly modify the reduction in Section 4.2.1,
namely, reducing from VERTEX COVER on Kj3-free graphs, and using the graph with
the smallest a-sequence among all K3-free graphs in H. This case is accomplished
in two steps, first the simpler case that all graphs in H contain K3 as subgraph
(Lemma 4.10) and, then, the case that some graph in H does not contain K3 as sub-
graph (Lemma 4.11).

If there is a star in H, then we again distinguish two cases, H containing a large
star, that is, a star with at least four leaves, or not. If yes, then we again reduce from
a special NP-hard version of VERTEX COVER, namely, VERTEX COVER on graphs with
maximum degree three. Note that the upper bound on the maximum degree excludes
the existence of large stars in G, which makes the argument in Section 4.2.1 (using
an adapted gadget construction) work again (Lemma 4.13). Thus, it remains the case
that H contains a star of exactly three leaves. Note that the case of stars with at most
two leaves is polynomial-time solvable and has been considered in Section 4.1. In the
case of stars with three leaves, we could not find a way to adapt the framework of
Yannakakis, since any reduction from an NP-hard variant of VERTEX COVER did not
avoid leaving some stars with three leaves in the new instance. Therefore, we apply a
completely new reduction from 3-CNF-SAT which has two variants, differing in how
they deal with long paths in H (Lemmas 4.14 and 4.15).

4.2.2. Proofs Based on the Reduction Framework of Yannakakis. First, we introduce a new
variant of DISJOINT II-VERTEX DELETION, where the size of the new solution is given
as a parameter, and show how it can be reduced to DISJOINT II-VERTEX DELETION.
In all proofs that follow, we show the NP-hardness of that variant, because all hard-
ness proofs need a size gadget that is employed in the reduction from the variant to
DiSJOINT II-VERTEX DELETION.

SIZE DISJOINT II-VERTEX DELETION

Input: An undirected graph G = (V, E), a parameter k, and a vertex sub-
set X C V such that G[X] € II, G — X € 1I, and X is inclusion-minimal under
this property.

Question: Is there a vertex subset X’ C V with | X’| < k such that XN X' = ()
and G — X' € II?

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:15

LEMMA 4.9. SIZE DISJOINT II-VERTEX DELETION can be reduced to DISJOINT
II-VERTEX DELETION in polynomial time.

PROOF. Let (G, X, k) be an instance of SIZE DISJOINT II-VERTEX DELETION. We
construct an instance (G, X) of DISJOINT II-VERTEX DELETION as follows (recall that
DISJOINT II-VERTEX DELETION asks for a solution X’ such that |X'| < |X|). First,
suppose that £ = | X|— 1. Then, obviously, (G, X, k) is a yes-instance for SIZE DISJOINT
[I-VERTEX DELETION if and only if (G, X) := (G, X) is a yes-instance for DISJOINT
II-VERTEX DELETION. It remains to deal with the cases k < |X| —1and k > |X| — 1,
where we employ a padding trick using a size gadget. The basic idea is to enforce that,
in the constructed graph G’ containing the size gadget, a certain number of vertices of
the new solution have to be in the size gadget, such that there are exactly k vertices
left to obstruct all forbidden induced subgraphs in G.

The size gadget for © < |X| — 1: In this case, informally speaking, we have to
force that only & vertices out of the |X| — 1 available vertices can be used to obstruct
all forbidden induced subgraphs. Let H, ¢, J, J', and d be defined as in the reduction
scheme (see Fig. 5). We create a new graph G by using a copy of G and adding a padding
gadget C constructed as follows. Add a new vertex w and |X| — k copies of H, identify
the vertex d of each newly added copy of H with w, and let X := X U {w}. The gadget C
is obviously connected and w is a cut-vertex in C. The vertex w obstructs all forbidden
induced subgraphs in C, because deleting w (and, thus, d) from each copy of H in C
leaves a graph with lexicographically smaller a-sequence (witnessed by c in each copy
of H). Hence, X is a minimal H-obstruction set for G.

An H-obstruction set X’ for G’ with X’ N1 X = () must contain at least one vertex
in each copy of H in C, thus X’ must contain at least | X| — k vertices of C; putting
into X’ the vertex c of each copy of H in C obstructs every forbidden induced subgraph
in H: every connected component of C' — X’ either is a connected component of a copy
of H — ¢ or consists of |X| — k copies of J that pairwise overlap in the vertex w. In
the latter case, w is a cut-vertex witnessing that each remaining connected component
has size smaller than J, yielding a lexicographically smaller a-sequence. This shows
that X/, in order to obstruct all forbidden induced subgraphs in C, needs to contain at
least | X| — k vertices of C. Recall that one demands that | X’| < |X|. Since X = X U{w},
there remain at most | X| — | X| + k — 1 = k vertices to obstruct all forbidden induced
subgraphs in @ = G — V(C). Hence, (G, X, k) is a yes-instance for SIZE DISJOINT
II-VERTEX DELETION if and only if (&, X) is a yes-instance for DISJOINT II-VERTEX
DELETION.)

The size gadget for © > | X| — 1: In this case, we construct GG in the same manner
using a gadget C with k — | X| + 2 copies of H overlapping in vertex w and let X be the
union of X and the vertex ¢ of each copy of H. Then, |X| = k + 2. A new solution X’
of size at most |[X| —1 = k + 1 with X’ N X = 0 for G can obstruct all forbidden
induced subgraphs in C with the vertex w, and there are k vertices left to obstruct
all forbidden induced subgraphs in G = G — V(C). Hence, (G, X, k) is a yes-instance
for S1ZE DISJOINT II-VERTEX DELETION if and only if (G, X) is a yes-instance for
DISJOINT II-VERTEX DELETION.

Obviously, in both cases the size gadget C can be constructed in polynomial time. O

Recall that, for the following two proofs, we assume that the set H of forbidden in-
duced subgraphs corresponding to II contains no star. We have to distinguish between
the cases that

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Michael R. Fellows et al.

(1) all forbidden induced subgraphs in H contain K3 (see Lemma 4.10), and that
(2) not all forbidden induced subgraphs in H contain K3 (see Lemma 4.11).

LEMMA 4.10. If the set H of minimal forbidden induced subgraphs corresponding
to 11 only consists of graphs that contain K3, then DISJOINT II-VERTEX DELETION is
NP-hard.

PROOF. The proof is by reduction from the NP-complete VERTEX COVER problem
on K3-free graphs [Garey and Johnson 1979] to SIZE DISJOINT II-VERTEX DELETION.
Let (G, k) be an instance of VERTEX COVER, where G is Kj-free. First, construct a
graph G’ using the reduction scheme of Yannakakis. Greedily compute a minimal -
obstruction set X for G’ such that X NV (G) = (). Such a set X always exists, since G is
K3-free and, therefore, does not contain any forbidden induced subgraph. By these ar-
guments and the reduction scheme, G has a size-k vertex cover if and only if (G’, X, k)
is a yes-instance for SIZE DISJOINT II-VERTEX DELETION. The NP-hardness of D1s-
JOINT II-VERTEX DELETION then follows from Lemma 4.9. O

In the following, assume that not all forbidden induced subgraphs contain K.

LEMMA 4.11. If the set H of minimal forbidden induced subgraphs corresponding
to 1I contains no stars, but does contain other graphs that do not contain Ks, then
DISJOINT II-VERTEX DELETION is NP-hard.

PRrROOF. The reduction from the NP-complete VERTEX COVER on K3-free graphs is
very similar to the one for Lemma 4.10. The difference is that G might now contain a
forbidden subgraph in H, and we have to show that we can greedily compute a mini-
mal H-obstruction set X for G’ such that X NV (G) = () (as in the proof of Lemma 4.10).
To this end, we first set the encoding forbidden subgraph H used in the reduction
scheme by Yannakakis equal to a K3-free subgraph in H which has the lexicographi-
cally smallest a-sequence among all K3-free graphs in H. Second, by setting H in this
way, a largest connected component in H — ¢ contains at least one edge, due to the fact
that H is not a star. Moreover, since H does not contain K3, at most one endpoint of
this edge is adjacent to c. Then, we select an endpoint of this edge that is not adjacent
to ¢ as the vertex d used in the construction of G’. Now, we can observe that in the
resulting G’ the vertices in V(G) induce an independent set. Therefore, removing all
vertices V(G') \ V(G) gives an H-obstruction set for G’ and we can easily compute an
inclusion-minimal solution X for G’ with X NV (G) = (. Since the graphs G and H are
Ks-free and so is G/, forbidden induced subgraphs with a smaller a-sequence than H,
that contain K3, do not have to be considered. The correctness of the reduction for this
case follows from the same arguments as in the proof of Lemma 4.10. O

4.3. Refined Reduction Strategies

Here, we present NP-hardness proofs for the cases where we have a star with at least
three leaves as a forbidden subgraph. The main result of this section is as follows.

THEOREM 4.12. Let 11 be a non-trivial hereditary graph property that is determined
by the components and let H be the corresponding set of all minimal forbidden induced
subgraphs. If H contains a star with at least three leaves, then DISJOINT II-VERTEX
DELETION is NP-hard.

Note that a star has a smaller a-sequence than any other forbidden induced subgraph
that is not a star, and there is only one star in H, since the graphs in H are inclusion-
minimal. Therefore, if H contains a star, then the graph with smallest a-sequence is
necessarily the star in H. Let H be the star in H.

The proof of Theorem 4.12 is based on the following case distinctions.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:17

Fig. 7: Example for the reduction in the proof of Lemma 4.13 if H is a star with four
leaves. Left: VERTEX COVER instance with a vertex cover C (black vertices). Right:
Corresponding SIZE DISJOINT II-VERTEX DELETION instance with the given solu-
tion X (gray vertices) and a solution X’ corresponding to the vertex cover C (black
vertices). For illustration, the gadgets H,, H,, and Hy, ,, are labeled.

(1) H is a star with at least four leaves (Lemma 4.13).
(2) H is a star with three leaves.

(a) H contains P, (Lemma 4.14).

(b) ‘H does not contain P, (Lemma 4.15).

LEMMA 4.13. Ifthe set H of minimal forbidden induced subgraphs corresponding
to property 11 contains a star H with at least four leaves, then DISJOINT II-VERTEX
DELETION is NP-hard.

PROOF. The proofis by reduction from the NP-complete VERTEX COVER on graphs
of maximum degree three [Garey and Johnson 1979] to SIZE DISJOINT II-VERTEX
DELETION. Let (G, k) be a corresponding input instance of VERTEX COVER. Let [> 4
be the number of leaves of H. An example of the following construction is given in
Fig. 7. Starting with an empty graph GG’ and an empty solution set X, for each vertex v
in G, create a copy H, of a star with [— 1 leaves (vertex gadget), identify its center
vertex with v, and add any deg.(v) of H,’s leaves to X. For each edge {u,v} in G,
create a copy Hy, ., of H (edge gadget), add Hy, .,’s center vertex to X, select two
arbitrary leaves u’,v' of Hy, . and insert the edges {u, v’} and {v,v'}.

Obviously, the graph G’ — X only contains connected components that are either iso-
morphic to a star with [— 1 leaves or isolated vertices. An isolated vertex as well as a
star with [— 1 leaves both have lexicographically smaller a-sequences than H. Hence,
since the star H with at least four leaves has a lexicographically smallest a-sequence
among all graphs in H, G’ — X € II. Moreover, X is minimal, because G — (X \ {v})
does contain a star with [leaves for any v € X. It remains to show that there is
a size-k vertex cover for G if and only if there is a vertex set X', X' N X = 0, of
size k' := k+|F(G)|, obstructing all forbidden induced subgraphs in G’'. In other words,
(G, k) is a yes-instance for VERTEX COVER if and only if (G’, X, k') is a yes-instance for
SIZE DISJOINT II-VERTEX DELETION, which shows that SIZE DISJOINT II-VERTEX
DELETION is NP-hard. The NP-hardness of DISJOINT II-VERTEX DELETION then fol-
lows from Lemma 4.9.

(=) Let C be a size-k vertex cover for G. The set X’ is constructed as follows. Begin-
ning with X’ := C, for each copy Hy, ., with the two leaves u’,v’ (see construction),
ifu € Candv ¢ C, then add v to X', if u ¢ C and v € C, then add v’ to X', and ifu € C
and v € C, then add either v’ or v’ to X'. Clearly, | X'| = k + |E(G)|, since X’ contains a
vertex for each edge in G and k vertices from the size-k vertex cover C (also see Fig. 7).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Michael R. Fellows et al.

The connected components in G/ — X' are either isolated vertices or stars with [— 1
leaves: the leaves of the components H, are isolated vertices in G’ — X’ if v € X', and
if v ¢ X', then its neighbors on the adjacent edge-gadgets are in X’ by construction
of X'. Hence, the vertex-gadget H,, a star with [— 1 leaves, forms a connected compo-
nent in G’ — X'. Concerning an edge-gadget Hy, ,,, we observe that exactly one of the
two vertices v/, v’ is in X’. Without loss of generality assume that +' € X’ and v’ ¢ X'.
Then, by the construction of X', u € X'. Thus, Hy, .} — ', a star with [— 1 leaves, is
a connected component in G’ — X'. Since H is the forbidden subgraph with the lexico-
graphically smallest a-sequence, X’ obstructs all forbidden induced subgraphs in G’.

(<) Let X' be a size-(k + |E(G)|) vertex set that obstructs every forbidden induced
subgraph in GG'. We may assume that X’ does not contain any degree-one vertex of G’
(since a degree-one vertex in X’ of a vertex gadget could be simply replaced by its
neighbor, and a degree-one vertex in X’ of an edge gadget Hy, .} could be simply re-
placed by either v’ or v'). Observe that for each edge-gadget Hy,, ., at least one of u', v’
must be in X', since Hy,) is a forbidden induced subgraph. Hence, X' contains at
least |FE(G)| vertices of the edge gadgets. Let {u,v} be an edge in G. We distinguish
two cases:

(1) If only one of u',v" of Hy, .} is in X', then v or v is in X': assume without loss of
generality that v’ € X’ and v' ¢ X’. Then, v’ together with the vertices of H, induce
a star with [leaves (which is forbidden) in G, and since we assumed that the leaves
of H, are notin X', v € X'.

(2) If both v’ and v’ are in X', and u,v ¢ X', then we can simply remove v’ from X’ and
add u instead. After that, X’ still obstructs all forbidden induced subgraphs, and
case (1) applies.

Hence, for each edge {u,v} in G at least one of its endpoints is in X’. In other
words, X' N V(G) is a vertex cover for GG. Since X’ contains at least |F(G)| vertices
of the edge gadgets, X’ N V(G) has size at most k. O

Next, we show the NP-hardness of the case that the forbidden subgraph with the
lexicographically smallest a-sequence is a star with three leaves. In this case, a reduc-
tion from VERTEX COVER seems less promising, since the VERTEX COVER instance
we reduce from contains vertices of degree three and therefore copies of the forbidden
induced star with three leaves, which would have to be obstructed by the solution X
in the reduction. This makes it difficult to translate a solution for SIZE DISJOINT II-
VERTEX DELETION back to a vertex cover in the VERTEX COVER instance.

We reduce from 3-CNF-SAT. Our proofs rely heavily on the simple structure of a
star. First, we consider the case that the path on four vertices is also forbidden.

LEMMA 4.14. If the set H of minimal forbidden induced subgraphs corresponding
to property 11 contains a star H with three leaves and H also contains the path on four
vertices, then DISJOINT II-VERTEX DELETION is NP-hard.

PROOF. The proof is by reduction from 3-CNF-SAT to Si1ZE DISJOINT II-VERTEX
DELETION. We assume without loss of generality that each variable appears in each
clause at most once. Let /' = ¢; A --- A ¢, be a 3-CNF formula over a variable set Y =
{y1,...,yp}. We denote the kth literal in clause ¢; by I%, for 1 < k < 3. An example of the
following construction is given in Fig. 8. Starting with an empty graph G and X := (),
construct an instance (G, X) for DISJOINT II-VERTEX DELETION as follows. For each
variable y;, introduce a cycle Y; of 4¢ vertices (variable gadget), add every second vertex
on Y; to X, and label all the other vertices on the cycle alternately with “+” and “-”.
For each clause ¢;, add a star C; with three leaves (clause gadget) and add its center

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:19

(1 VyaVys) (y1 Vg Vys)

Fig. 8: Example for the reduction in the proof of Lemma 4.14 for the 3-CNF-SAT for-
mula (—y; Vy2 Vys) A (y1 V—y2 V —ys). For illustration, one minimality gadget is labeled
with A and one connection gadget is labeled with B. The vertices of the connection
gadget B are named according to the definitions of ay,u, v, and w; in the proof of
Lemma 4.14 for £ = 1. The vertices in the given solution X are gray, the vertices in
the disjoint solution X', corresponding to the satisfying truth assignment y; = true,
yo = true, y3 = false, are black.

vertex to X. Each of the three leaves of C; corresponds to a literal in ¢;, and each leaf
is connected to a variable gadget as follows. Suppose that l;? is a literal y; or —y;, and
let a;, be the leaf of C; corresponding to I¥. Add a star with three leaves (connection

gadget), identify one leaf with a;, identify another leaf with an unused vertex® on Y;
with label “+” if [¥ is positive and with an unused vertex on Y; with label “—” if I% is
negative, and add the remaining leaf to X . Finally, for each remaining unused vertex v
with label “+” or “—” in GG, add a star with three leaves (minimality gadget), add two of
its leaves to X, and add an edge connecting the center of the star with v. This completes
the construction.

Obviously, G — X only contains paths on three vertices as connected components
(cf. Fig. 8), that is, G — X € II. Moreover, X is minimal, that is, for any v € X, G —
(X \ {v}) does not satisfy II. Let r be the number of minimality gadgets. We show
that formula F' has a satisfying truth assignment if and only if there exists a size-
(r + 3pg + 3q) set X', X’ N X = (), that obstructs all forbidden induced subgraphs in G.
In other words, F' has a satisfying truth assignment if and only if (G, X, r+3pg+3¢) is a
yes-instance of SIZE DISJOINT II-VERTEX DELETION. The NP-hardness of DISJOINT
II-VERTEX DELETION then follows from Lemma 4.9.

(=) Assume that a satisfying truth assignment for F' is given. Based on this truth
assignment, we construct the disjoint solution X', beginning with X’ := (), as follows.
For each variable y;, 1 < i < p, if y; = true, then add every vertex on Y; with label “+”
to X', and if y; = false, then add every vertex on Y; with label “—” to X’. Add the
center vertex of each minimality gadget to X’. For each literal lf of each clause c;,

if lf = true, then add a; of the corresponding clause gadget C; to X', and if lf = false,
then add the center of the corresponding connection gadget (which is adjacent to ay)
to X'. Clearly, | X'| = r + 3pq + 3q. The connected components of G — X’ are either iso-
lated vertices or paths on at most three vertices (thus, G — X’ € II): the set X’ contains
the center of each minimality gadget, hence the leaves of the minimality gadgets are

6This means that no vertex of another connection gadget has been identified with this vertex on Y;, that is,
it is of degree two.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Michael R. Fellows et al.

isolated vertices in G — X’. Concerning a variable gadget Y;, observe that every fourth
vertex on the cycle is in X/, and, if a vertex labeled with “+” or “~” is not in X', then its
neighbor outside of Y; (which belongs either to a minimality gadget or to a connection
gadget) is in X’. Thus, in G — X’, the remaining vertices of Y; induce connected com-
ponents that are paths on three vertices. For a connection gadget, observe that either
the center vertex is in X’ or two of its leaves (which are identified with vertices on
other gadgets) are in X', so there remains either an isolated vertex or a single edge
in G — X'. Concerning a clause gadget Cj, if there is a satisfying truth assignment,
then at least one literal is true; therefore, at least one leaf of C; is in X'. If a leaf is not
in X', then its neighbor on the corresponding connection gadget is in X'. Hence, the
connected component in G — X’ that includes the center of C; is either a path on three
vertices, a single edge, or an isolated vertex (depending on how many literals of ¢; are
true).

(<) Let X', X'NX =0, be a size-(r + 3pq+ 3¢) vertex set that obstructs every forbid-
den induced subgraph in G. We may assume that X’ does not contain any degree-one
vertex in G (since a degree-one vertex in X’ could simply be replaced by its neighbor).
Recall that the set of minimal forbidden induced subgraphs contains the star with
three leaves and the path on four vertices. Each minimality gadget is a star with three
leaves, and since we assumed that no degree-one vertex is in X', its center vertex must
be in X’. Hence, X’ contains exactly r vertices of the minimality gadgets. Since P;s are
forbidden, at least every fourth vertex on the cycle of each variable gadget has to be
in X’. However, we will see that X’ contains exactly three vertices for each clause
(thus, 3¢ vertices for all clauses), and these vertices cannot be vertices on any variable
gadget. Therefore, for each variable gadget Y;, the set X’ must contain exactly every
fourth vertex of Y; (in order to obtain a total number of 3¢p vertices in X’ for all p
variable gadgets). Thus X’ either contains all vertices labeled “+” or all vertices la-
beled “—”. If X’ contains all vertices labeled “+”, then we set y; := true. If X’ contains
all vertices labeled “—”, then we set y; := false. It remains to show that the assignment
defined in this way is a satisfying truth assignment for the formula F'.

For a clause gadget C;, and for each leaf a;, of C; corresponding to literal l‘;-“, let uy,
be the center of the corresponding connection gadget, v;, be the degree-one neighbor
of uy, and w; be the neighbor of u; on the variable gadget Y;, for some 1 < i < p
(cf. Fig. 8). There is a P, containing the center of C}, together with ay, uy, and vj,. Since
the center of C; is in X, the set X’ has to contain at least three vertices to obstruct
the three Pss corresponding to C; (one for each leaf). Thus, for all clauses, there are
at least 3¢ vertices in X’ that obstruct these Pys. In total, X’ contains r + 3pg + 3¢
vertices. Therefore, there are exactly 3q vertices in X’ that obstruct these Pys. Thus,
for a clause gadget C;, for each leaf ay, either a; € X' or u, € X’'. Which case applies
depends on which vertices from Y; are in X': if w, € X', then w, together with wu,
and its two neighbors on Y; induce a star with three leaves, thus u, € X’'. If w, €
X', then either a, € X' or up, € X'. If w, € X’ and u, € X’, however, then one
can simply remove u; from X’ and add aj instead. After that, X’ still obstructs all
forbidden induced subgraphs. Since X’ obstructs all forbidden induced subgraphs, at
least one leaf a;, of C; must be in X', which implies that w;, € X'. Let Y; be the variable
gadget that contains wy. If w; has label “+”, then y; = true by the definition of the
assignment, and by construction l;-“ = y, is a positive literal, hence ¢; is satisfied. If wy

has label “—”, then y; = false, and, by construction, lf = —y; is a negative literal,

hence ¢; is satisfied. Summarizing, for every clause there is at least one true literal
and thus the constructed truth assignment satisfies . O

Finally, we consider the case that the path on four vertices is not forbidden.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:21

(my1 Vya Vys) (y1V eV —ys)

Fig. 9: Example for the reduction in the proof of Lemma 4.15 for the 3-CNF-SAT for-
mula (—y1 V y2 Vy3) A (y1 V —y2 V —y3). The vertices in the given solution X are gray,
the vertices in the disjoint solution X’ corresponding to the satisfying truth assign-
ment y; = true, y» = true, y3 = false, are black.

LEMMA 4.15. Ifthe set H of minimal forbidden induced subgraphs corresponding
to property 11 contains a star H with three leaves and H does not contain the path on
four vertices, then DISJOINT II-VERTEX DELETION is NP-hard.

PROOF. As for Lemma 4.14, the proof is by reduction from 3-CNF-SAT to SIZE
DISJOINT II-VERTEX DELETION, and we use the same notation for the 3-CNF-SAT
formula as employed there. The proof principle is similar, but the gadgets differ. In the
following, we only describe the particularities of this construction and omit straight-
forward details that can directly be adapted from the proof of Lemma 4.14. An example
of the construction is given in Fig. 9. The basic structure of a variable gadget is a cycle
of 3¢q vertices (in the following, further vertices and edges will be added to each such
cycle). Add every third vertex on that cycle to X, and for each such vertex v € X add
a new vertex and make it adjacent to v. Then, label the remaining vertices on the cy-
cle, that is, vertices on the cycle that are not in X, alternately with “+” and “~”. For
each clause ¢; introduce a star with three leaves C; (clause gadget). Each of the three
leaves of C; corresponds to a literal in ¢;. As in the proof of Lemma 4.14, we connect
the leaves of C; with vertices labeled with “+” or “—” on the corresponding variable
gadgets, depending on whether the corresponding literal is positive or negative, re-
spectively. Herein, for a pair of adjacent labeled vertices, one with label “+” and one
with label “—”, at most one of them is connected to a clause gadget. The connection
gadget is a star with four leaves, one leaf is identified with a leaf of a clause gadget,
one leaf is identified with a vertex labeled “+” or “—” on a variable gadget, and the
remaining two leaves are added to X. After adding all connection gadgets, for each
pair u, v of adjacent labeled vertices, one with label “+” (say, u) and one with label “—”
(say, v), if both « and v have not been connected to a clause gadget, add a new vertex
and make it adjacent to u. Moreover, for each labeled vertex u on a variable gadget
that has been connected to a clause gadget, add a new vertex, add it to X, and make it
adjacent to u.

For the resulting graph G, observe that G — X contains only isolated vertices, paths
on three vertices, and paths on four vertices as connected components. Only the paths
on four vertices have a higher a-sequence than the star with three leaves, but, by

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Michael R. Fellows et al.

the preconditions of Lemma 4.15, these are not forbidden. Therefore, X obstructs all
forbidden induced subgraphs in G, and thus G — X € II. Moreover, X is minimal, since
for each v € X, G — (X \ {v}) contains a star with three leaves. We claim that F has a
satisfying assignment if and only if there exists a size-(3¢+3pq) set X', X'NX = (), that
obstructs all forbidden induced subgraphs in G. The proof of the claim is very similar
to the proof of Lemma 4.14. For this reason, we omit the details. Note that for each
variable gadget (together with the degree-one vertices that have been added) the only
possibilities are that all vertices labeled “+” or all vertices labeled “—” can be in X,
and for each clause, X’ must contain exactly three vertices, one for each literal. For
each clause gadget in G, at least one leaf must be in X', and thus the clause gadgets
are obstructed. This guarantees the satisfiability of the corresponding formula F if X’
has size 3¢ + 3pg. O

Clearly, Lemmas 4.13-4.15 yield Theorem 4.12.

5. OUTLOOK

As indicated in the introductory section, there are important problems amenable to
iterative compression that do not fall into the problem class studied here. Among
these, in particular, we have DIRECTED FEEDBACK VERTEX SET and ALMOST 2-
SAT. Hence, it would be interesting to further generalize our results to other problem
classes, among these also being vertex deletion problems on directed graphs or bipar-
tite graphs, and edge deletion problems. Moreover, our work here has left open the case
where a forbidden subgraph may consist of more than one connected component.

6. ACKNOWLEDGEMENTS

We thank three anonymous referees of Transactions on Computation Theory for helpful
remarks improving the presentation of this paper.

REFERENCES

AARTS, E. AND LENSTRA, J. K. 1997. Local Search in Combinatorial Optimization. Wiley.

ABELLO, J., RESENDE, M. G. C., AND SUDARSKY, S. 2002. Massive quasi-clique detection. In Proceedings
of the 5th Latin American Symposium on Theoretical Informatics (LATIN *02). LNCS Series, vol. 2286.
Springer, 598-612.

BOCKENHAUER, H.-J., HROMKOVIC, J., MOMKE, T., AND WIDMAYER, P. 2008. On the hardness of reopti-
mization. In Proceedings of the 34th Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM ’08). LNCS Series, vol. 4910. Springer, 50—65.

CAl, L. 1996. Fixed-parameter tractability of graph modification problems for hereditary properties. Infor-
mation Processing Letters 58, 4, 171-176.

CHEN, J., FOMIN, F. V., Liu, Y., LU, S., AND VILLANGER, Y. 2008. Improved algorithms for feedback vertex
set problems. Journal of Computer and System Sciences 74, 7, 1188—-1198.

CHEN, J., LiU, Y., LU, S., O’'SULLIVAN, B., AND RAZGON, I. 2008. A fixed-parameter algorithm for the
directed feedback vertex set problem. Journal of the ACM 55, 5. Article 21, 19 pages.

DEHNE, F. K. H. A., FELLOWS, M. R., LANGSTON, M. A., ROSAMOND, F. A., AND STEVENS, K. 2007.
An O(2°(F)p3) FPT algorithm for the undirected feedback vertex set problem. Theory of Computing
Systems 41, 3, 479-492.

GABOW, H. N. AND TARJAN, R. E. 1989. Faster scaling algorithms for network problems. SIAM Journal on
Computing 18, 5, 1013-1036.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman.

GREENWELL, D. L., HEMMINGER, R. L., AND KLERLEIN, J. B. 1973. Forbidden subgraphs. In Proceedings
of the 4th Southeastern Conference on Combinatorics, Graph Theory and Computing. 389-394.

GUoO, J. 2006. Algorithm design techniques for parameterized graph modification problems. Ph.D. thesis,
Institut fiir Informatik, Friedrich-Schiller-Universitit Jena.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems A:23

GUoO, J., GRAMM, J., HUFFNER, F., NIEDERMEIER, R., AND WERNICKE, S. 2006. Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer and System
Sciences 72, 8, 1386-1396.

GUO, J., MOSER, H., AND NIEDERMEIER, R. 2009. Iterative compression for exactly solving NP-hard mini-
mization problems. In Algorithmics of Large and Complex Networks. LNCS Series, vol. 5515. Springer,
65-80.

HUFFNER, F., KOMUSIEWICZ, C., MOSER, H., AND NIEDERMEIER, R. 2010. Fixed-parameter algorithms
for cluster vertex deletion. Theory of Computing Systems 47, 1, 196-217.

KHOT, S. AND RAMAN, V. 2002. Parameterized complexity of finding subgraphs with hereditary properties.
Theoretical Computer Science 289, 2, 997-1008.

KRAWCZYK, A. 1999. The complexity of finding a second Hamiltonian cycle in cubic graphs. Journal of
Computer and System Sciences 58, 3, 641-647.

LEwIS, J. M. AND YANNAKAKIS, M. 1980. The node-deletion problem for hereditary properties is NP-
complete. Journal of Computer and System Sciences 20, 2, 219-230.

MARX, D. 2010. Chordal deletion is fixed-parameter tractable. Algorithmica 57, 4, TAT-768.

MARX, D. AND SCHLOTTER, I. 2007. Obtaining a planar graph by vertex deletion. In Proceedings of the
33rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG 07). LNCS Series,
vol. 4769. Springer, 292-303.

MOSER, H., NIEDERMEIER, R., AND SORGE, M. 2009. Algorithms and experiments for clique relaxations—
finding maximum s-plexes. In Proceedings of the 8th International Symposium on Experimental Algo-
rithms (SEA °09). LNCS Series, vol. 5526. Springer, 233—-244.

NIEDERMEIER, R. 2006. Invitation to Fixed-Parameter Algorithms. Oxford University Press.

NISHIMURA, N., RAGDE, P., AND THILIKOS, D. M. 2005. Fast fixed-parameter tractable algorithms for
nontrivial generalizations of Vertex Cover. Discrete Applied Mathematics 152, 1-3, 229-245.

PAPADIMITRIOU, C. H. 1994. On the complexity of the parity argument and other inefficient proofs of exis-
tence. Journal of Computer and System Sciences 48, 3, 498-532.

RAZGON, I. AND O’SULLIVAN, B. 2009. Almost 2-SAT is fixed-parameter tractable. Journal of Computer
and System Sciences 75, 8, 435-450.

REED, B., SMITH, K., AND VETTA, A. 2004. Finding odd cycle transversals. Operations Research Let-
ters 32, 4, 299-301.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

