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Abstract. In a graph G = (V, E), a vertex subset S ⊆ V of size k

is called c-isolated if it has less than c · k outgoing edges. We repair a
nontrivially flawed algorithm for enumerating all c-isolated cliques due
to Ito et al. [European Symposium on Algorithms 2005] and obtain an
algorithm running in O(4c · c4 · |E|) time. We describe a speedup trick
that also helps parallelizing the enumeration. Moreover, we introduce
a more restricted and a more general isolation concept and show that
both lead to faster enumeration algorithms. Finally, we extend our con-
siderations to s-plexes (a relaxation of the clique notion), pointing out
a W[1]-hardness result and providing a fixed-parameter algorithm for
enumerating isolated s-plexes.

1 Introduction

Finding and enumerating cliques and clique-like structures in graphs has many
applications ranging from technical networks [9] to social and biological net-
works [1–3]. Unfortunately, clique-related problems are known to be notoriously
hard for exact algorithms, approximation algorithms, and fixed-parameter algo-
rithms [7, 5]. Ito et al. [9] introduced an interesting way out of this quandary by
restricting the search to isolated cliques. Herein, given a graph G = (V,E), a
vertex subset S ⊆ V of size k is called c-isolated if it has less than c · k outgoing
edges. As their main result, Ito et al. [9] claimed an O(4c · c5 · |E|) time algo-
rithm for enumerating all c-isolated cliques in a graph. In particular, this means
linear time for constant c and fixed-parameter tractability with respect to the
parameter c. Unfortunately, the algorithm proposed by Ito et al. [9] suffers from
serious deficiencies1.
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We start with describing the algorithm of Ito et al. [9] and show that it
does not fulfill the claimed running time bound. Then, we present some new
results that eventually help us to repair Ito et al.’s approach, ending up with an
algorithm that enumerates all c-isolated cliques in O(4c · c4 · |E|) time. We also
observe a speedup trick which seems to have high practical potential and which
allows to parallelize the so far purely sequential enumeration algorithm.

Next, inspired by Ito et al.’s isolation concept, we propose two further isola-
tion definitions, a weaker (less demanding) and a stronger concept, both prac-
tically motivated. Somewhat surprisingly, we can show that both concepts lead
to faster enumeration algorithms for isolated cliques, improving the exponential
factor from 4c to 2c and 2.44c, respectively.

Finally, we show how to adapt the isolation scenario to the concept of s-
plexes, a relaxation of cliques occurring in social networks analysis [15, 1]. In a
graph G = (V,E), a vertex subset S ⊆ V of size k is called an s-plex if the
minimum degree in G[S] is at least k − s. First, strengthening an NP-hardness
result of Balasundaram et al. [1], we point out that the problem of finding s-
plexes is W[1]-hard with respect to the parameter k; that is, the problem seems
as (parameterized) intractable as Clique is. This motivates our final result, a
fixed-parameter algorithm (the parameter is the isolation factor) for constant s
that enumerates all of one type of maximal isolated s-plexes. As a side result,
here we improve a time bound for a generalized vertex cover problem first studied
by Nishimura et al. [12].

Preliminaries. We consider only undirected graphs G = (V,E) with n := |V |,
m := |E|, V (G) := V , and E(G) := E. Let N(v) := {u ∈ V | {u, v} ∈ E}
and N [v] := N(v)∪{v}. For v ∈ V , let degG(v) := |N(v)|. For A,B ⊆ V,A∩B =
∅, let E(A,B) := {{u, v} | u ∈ A, v ∈ B}. For V ′ ⊆ V , let G[V ′] be the
subgraph of G induced by V ′ and G \ V ′ := G[V \ V ′]. For v ∈ V , let G − v :=
G[V \ {v}]. A set S with property P is called maximal if no proper superset
of S has property P , and maximum if no other set with property P has higher
cardinality.

Parameterized complexity [5, 11] is an approach to finding optimal solutions
for NP-hard problems. The idea is to accept the seemingly inevitable combina-
torial explosion, but to confine it to one aspect of the problem, the parameter.
If for relevant inputs this parameter remains small, then even large problems
can be solved efficiently. More precisely, a problem of size n is fixed-parameter

tractable (FPT) with respect to a parameter k if there is an algorithm solving it
in f(k) · nO(1) time.

Due to the lack of space, most proofs will appear in the full version of this
paper. Some material also appears in [10].

2 Enumerating Isolated Cliques

We begin with describing Ito et al.’s algorithm for enumerating maximal c-
isolated cliques [9]. Given a graph G = (V,E) and an isolation factor c, first the
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vertices are sorted by their degree such that u < v ⇒ deg(u) ≤ deg(v). The
index of a vertex is its position in this sorted order. For a vertex set C ⊆ V , an
outgoing edge is an edge {u, v} with u ∈ C and v /∈ C, and for a vertex v ∈ C, its
outgoing edges are the outgoing edges of C that are incident on v. Let N+[v] :=
{u ∈ N [v] | u ≥ v} and N−(v) := {u ∈ N(v) | u < v}.

In a c-isolated clique, the vertex with the lowest index is called the pivot of
the clique. Clearly, a pivot has less than c outgoing edges. Since every c-isolated
clique has a pivot, we can enumerate all maximal c-isolated cliques of a graph by
enumerating all maximal c-isolated cliques with pivot v for each v ∈ V and then
removing those c-isolated cliques with pivot v that are a subset of a c-isolated
clique with another pivot.

The enumeration of maximal c-isolated cliques with pivot v for each v ∈ V is
the central part of the algorithm. We call this the pivot procedure. It comprises
three successive stages.

Trimming stage. In this stage, we build a candidate set C that is a superset of
all c-isolated cliques with pivot v. The candidate set C is initialized with N+[v],
and then vertices that obviously cannot be part of a c-isolated clique with pivot v
are removed from C. We refer to Ito et al. [9] for details.

Enumeration stage. In this stage, all maximal c-isolated cliques with pivot v are
enumerated. Let C be the candidate set after the trimming stage, which deleted
d vertices from N+[v]. In total, we can delete only less than c vertices from N+[v],
since otherwise v obtains too many outgoing edges. Therefore, c̃ := c − d − 1
is the number of vertices that we may still remove from C. We can enumerate
cliques C ′ ⊆ C of size at least |C| − c̃ by enumerating vertex covers of size at

most c̃ in the complement graph G[C]. Ito et al. propose to enumerate all vertex
covers of size at most c̃ [9]. We point to problems with this approach in Sect. 2.1.

Screening stage. In the screening stage, all cliques that are either not c-isolated or
that are c-isolated but not maximal are removed. First the c-isolation is checked.
Then those cliques that pass the test for isolation are compared pairwise, and we
only keep maximal cliques. Finally, we check each clique that is left for pivot v
against each clique obtained during calls to pivot(u) with u ∈ N−(v), since these
are the only cliques that can be superset of a clique obtained for pivot v. The
claimed overall running time, in the exponential part dominated by this last
step, is then O(4c · c5 · |E|) [9].

2.1 Problems with the Algorithm

The crucial part of the algorithm is the enumeration stage, in which the algo-
rithm enumerates all vertex covers of size less than c̃. The authors argued that
for a graph of size |C|, this can be done in O(1.39c̃ · c̃2 + |C|2) time. In contrast,
Fernau [6] showed that the vertex covers of size exactly k in a graph can be
enumerated in time O(2kk2 +kn) if and only if k is the size of a minimum vertex
cover of the graph and that otherwise no algorithm of running time f(k) · nO(1)
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Fig. 1. Example for the enumeration stage with pivot v. Solid lines are edges between
members of the clique; dashed lines are outgoing edges.

that enumerates all of these vertex covers exists, simply because there are too
many. But in the course of the pivot procedure it may happen that we have to do
just that: enumerate all vertex covers of size c̃ or less, where c̃ is not the size of
a minimum vertex cover of G[C]. Since this cannot be done in time f(c) · nO(1),
the algorithm does not yield fixed-parameter tractability with respect to the
parameter c.

Figure 1 (a) illustrates such a situation. Consider the case c = 4 with v
as pivot. No trimming takes place. This means that at the beginning of the
enumeration stage, we may still remove up to c̃ = c − 1 = 3 vertices from C
to obtain a c-isolated clique. Since C = N+[v] forms a clique, the graph G[C]
has only one minimum vertex cover, namely the empty set. This means that all
subsets of C \ {v} (v as pivot must not be eliminated from C) of size 3 or less
are vertex covers that we would have to enumerate. Clearly, the number of such
vertex covers is not only dependent on the size of the covers, but also on the size
of N+[v]. In our example, there are 8 such covers, and it is easy to see that we
can increase the number of vertex covers simply by increasing the size of N+[v].

In contrast, enumeration of minimal vertex covers was shown to be inclusion-

minimally fixed parameter enumerable [4]; in particular, all minimal solutions of
size at most c can be enumerated in O(2cc2 + m) time. So running time is not
a problem here; however, we miss some c-isolated cliques when only considering
minimal vertex covers. This is because we cannot simply discard a maximal
clique that violates the isolation condition; it might have some subsets that are

c-isolated. As an example, in Fig. 1 (a), the clique has 4 vertices and 16 outgoing
edges and is thus not 4-isolated. However, two subsets ((b) and (c)) are cliques
with 3 vertices and 11 outgoing edges, and thus are 4-isolated.

2.2 Repairing the Enumeration Stage

To cope with the problems described in Sect. 2.1, we propose a two-step ap-
proach for enumerating all maximal c-isolated cliques. First, we enumerate all
minimal vertex covers and thus obtain maximal cliques in the candidate set C.
Then, to also capture c-isolated cliques that are subsets of non-c-isolated cliques
enumerated this way, for each of these cliques, we enumerate all maximal sub-
sets that fulfill the isolation condition. The problem Isolated Clique Subset
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procedure isolated-subset(C, c, xmin)

Input: A clique C = {v1, v2, . . . , vk} with vertices sorted by degree, an iso-
lation factor c and a minimum number xmin of outgoing edges from
each vertex.

Output: The set of maximal c-isolated cliques C in C.

1: foreach v ∈ C: x(v) := deg(v) − |C| − 1 − xmin

2: ĉ := c − xmin

3: e(C) := (
P

v∈C
x(v)) − ĉ · |C| + 1

4: D := {∅}, C := ∅
5: repeat ĉ times

6: foreach D ∈ D
7: if C \ D is a c-isolated clique then C := C ∪ {C \ D}
8: else

9: if D = ∅ then i := k + 1 else i := minvl∈D{l}
10: D := D ∪ {D ∪ {vj} | k − ĉ < j < i}
11: D := D \ {D}
12: return C

Fig. 2. Algorithm for enumerating maximal c-isolated subsets of a clique C

of finding these c-isolated subsets is then: given a graph G = (V,E) and a
clique C ⊆ V , find a set C ′ ⊆ C that forms a c-isolated vertex set, that is, a set
with less than c · |C ′| outgoing edges. The difficulty is in doing this fast enough,
in particular with the running time depending only polynomially on |C|. For this
(Theorem 1), the key is the following lemma, which reduces the choices of which
vertices to omit from C.

Lemma 1. Given a clique C with |C| = k, every maximal c-isolated subset of C
is a superset of Ck−c+1, where Ck−c+1 is the set of the k − c + 1 vertices with

lowest index in C.

According to Lemma 1, we may only remove vertices from the c − 1 vertices
in C \ Ck−c+1 to obtain maximal c-isolated subsets of C. Hence, there are 2c−1

subsets of C \ Ck−c+1, and we enumerate maximal c-isolated subsets of C by
generating the subsets of C\Ck−c+1 in order of increasing cardinality and testing
for each generated set whether its removal from C yields a maximal c-isolated
subset. In this way, we can avoid examining supersets of removal sets for which a
c-isolated clique was already output, since they would yield non-maximal cliques.
The algorithm is shown in Fig. 2. Note that in lines 1–2 we compute an equivalent
instance of Isolated Clique Subset with isolation factor ĉ by decreasing the
number of outgoing edges of each vertex by xmin, where xmin is the minimum
number of outgoing edges from each vertex in C. The computation of line 3
derives the number of outgoing edges above the threshold allowed by the isolation
condition. With this, the condition in line 7 can be tested in constant time. This
is needed to obtain the running time as claimed by the following theorem.
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Theorem 1. Given an instance of Isolated Clique Subset with at least xmin

outgoing edges from each vertex, all of the at most O(2c−xmin) maximal solutions

can be enumerated in O(2c−xmin + |C|) time.

We now describe how to use Theorem 1 to obtain a correct pivot procedure.
Our modified pivot procedure differs from the original procedure only in the
enumeration stage and in the screening stage. The enumeration stage is divided
into two steps: the enumeration of maximal cliques and the enumeration of
maximal subsets that fulfill the isolation condition for each of those cliques.
Using Theorem 1, we can upper-bound the running time of the enumeration
stage.

Lemma 2. Given a graph G = (V,E), a vertex v ∈ V , a set C ⊆ N+[v], and

an isolation factor c, there are at most 2c−1 · c maximal c-isolated cliques with

pivot v, and they can be enumerated in O(2c · c2 · m(C)) time, where m(C) is

the number of edges in G[C].

In the screening stage, we filter non-maximal cliques by O(4c · c3) pairwise
comparisons. Since the cliques obtained in the enumeration stage have size at
most degG(v), these comparisons can be performed in O(4c · c3 · degG(v)) time.
With the running times of the stages of the pivot procedure for pivot v we can
upper-bound the running time of the whole algorithm:

Theorem 2. All maximal c-isolated cliques of a graph can be enumerated in

O(4c · c3 · m) time.

2.3 Improved Screening of Cliques

In addition to fixing Ito et al.’s algorithm [9], we present an improved screening
stage. While we can improve the asymptotic running time derived in Theorem 2
only slightly, the improvement facilitates parallelization of the enumeration al-
gorithm and allows an exponential speedup for a variant of isolated clique enu-
meration to be presented in Sect. 3.2. More precisely, instead of a brute-force all-
pairwise comparison, we achieve a simple and efficient test for checking whether
an enumerated clique is subset of a clique with a different pivot.

Lemma 3. A c-isolated clique C with pivot v is subset of a c-isolated clique C ′

with pivot u 6= v iff u ∈ N−(v) and N(u) ⊇ C.

Proof. We prove both directions separately. If C ′ ) C is a clique with pivot u,
then u must be adjacent to all vertices in C, in particular u ∈ N+[v]. Since u is
the pivot of C ′, it has lower index than v and thus u ∈ N−(v).

If there is a vertex u ∈ N−(v) that is adjacent to all vertices in C, then C∪{u}
is a clique and a superset of C. It is furthermore c-isolated, since with u we have
added a vertex with less than c outgoing edges (because u < v). Also, u is its
pivot, again because u < v. ut
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According to Lemma 3, we can replace the pairwise comparisons between
cliques enumerated in previous calls of the pivot procedure and those of the
current call for pivot v with a simple test that looks for vertices in N−(v) that
are adjacent to all vertices of an enumerated clique. This test takes O(c · |C|)
time. Since the enumerations of cliques for different pivots now run completely
independent from each other, we can parallelize our algorithm by executing the
pivot procedures for different pivot vertices on up to n different processors. Un-
fortunately, the asymptotic running time derived in Theorem 2 remains largely
unchanged, since there are still O(4cc2) pairwise comparisons between cliques
for a single pivot; however, we save a factor of c and there is also a conceivable
speedup in practice since we significantly reduce the number of brute-force set
comparisons.

3 Alternative Isolation Concepts

Since isolation is not merely a means of developing efficient algorithms for the
enumeration of cliques but also a trait in its own right, it makes sense to consider
varying degrees of isolation. For instance, this is useful for the enumeration of
isolated dense subgraphs for the identification of communities, which play a
strong role in the analysis of biological and social networks [13].

In this context, the definition of c-isolation is not particularly tailored to
these applications and we propose two alternative isolation concepts. One of
them, min-c-isolation, is a weaker notion than c-isolation and the other, max-c-
isolation, is a stronger notion than c-isolation. For both isolation concepts, we
achieve a considerable speedup in the exponential part of the running time.

3.1 Minimum Isolation

Min-c-isolation is a weaker concept of isolation than the previously defined c-
isolation, since we only demand that a set contains at least one vertex with less
than c outgoing edges.

Definition 1. Given a graph G = (V,E) and a vertex set S ⊆ V of size k, S is

min-c-isolated when there is at least one vertex in S with less than c neighbors

in V \ S.

Obviously, every c-isolated set is also min-c-isolated. The enumeration of maxi-
mal min-c-isolated cliques consequently yields sets that are at least as large and
often larger than c-isolated cliques.

The algorithm for the enumeration of maximal min-c-isolated cliques is mainly
a simplification of the algorithm from Sect. 2. However, we lose linear-time solv-
ability in the case of constant isolation factors c—the running time then be-
comes O(n ·m). We use the same pivot definition and enumerate cliques for each
possible pivot; from our definition of min-c-isolation it follows directly that the
pivot of a min-c-isolated clique must have less than c neighbors outside of the
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clique. Subsequently, we point out the differences in the three main stages of the
pivot procedure.

In the trimming stage, we start with C := N [v] as candidate set. After trim-
ming, we can assume that every vertex u that was not removed has at least |C|−c
neighbors in C. In the enumeration stage, we simply enumerate minimal vertex
covers in G[C] of size at most c̃, where c̃ is the number of vertices that can
still be removed from the candidate set C. For each enumerated minimal vertex
cover D, the set C\D is a maximal min-c-isolated clique. Hence, we need not test
for maximality, but the enumerated cliques might contain a vertex with lower
index than v, since we have not necessarily removed all vertices from N−(v).
If a clique C ′ features a vertex with lower index than v, then C ′ is removed
from the output. Compared to Theorem 2, the fact that we do not perform any
maximality test results in an improved exponential part of the running time.

Theorem 3. All maximal min-c-isolated cliques of a graph can be enumerated

in O(2c · c · m + n · m) time.

3.2 Maximum Isolation

Compared to c-isolation, max-c-isolation is a stronger notion. This results in
most cases in the enumeration of smaller cliques for equal values of c.

Definition 2. Given a graph G = (V,E) and a vertex set S ⊆ V of size k, S is

max-c-isolated if every vertex v ∈ S has less than c neighbors in V \ S.

This isolation concept is especially useful for graphs where the vertices have
similar degrees. Consider for example a graph in which all vertices have the same
degree. Here, the notions c-isolation and max-c-isolation become equivalent for
cliques, but max-c-isolation allows a better worst-case running time.

We apply the algorithm scheme presented in Sect. 2, that is, for every ver-
tex v ∈ V we enumerate all maximal max-c-isolated cliques with pivot v.

Trimming Stage. We compute a candidate set C ⊆ N+[v] by removing every
vertex from N+[v] that cannot be in a maximum max-c-isolated clique with
pivot v.

Enumeration Stage. In this stage, we enumerate max-c-isolated cliques C ′ ⊆
C with pivot v. As in Sect. 2, we first enumerate maximal cliques in C via
enumeration of minimal vertex covers of size at most c̃ in G[C], where c̃ is
the number of vertices that can still be removed from the candidate set C. The
cliques thus obtained may violate the isolation condition, since they may contain
vertices with too many outgoing edges. We can restore the isolation condition for
each enumerated clique by simply removing these vertices. This is done until the
resulting clique is either max-c-isolated or we have removed more than c̃ vertices.
In the latter case we discard the clique. The remaining enumerated cliques are
not necessarily maximal, and therefore non-maximal cliques must be removed
from the output in the screening stage.
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Screening Stage. There are two possibilities for an enumerated clique C to be
non-maximal. First, it can be proper subset of another max-c-isolated clique
with pivot v. Second, it can be proper subset of a max-c-isolated clique with
pivot u < v. For the first possibility, we test whether there is a set of vertices
D ⊆ N+[v]\C such that C∪D is a max-c-isolated clique. Clearly, D has to form
a clique and all its vertices have to be adjacent to all vertices in C. Furthermore,
whenever D contains a vertex u with degree |C|+ c+x, then |D| must have size
at least x + 1. Otherwise, C ∪ D is not max-c-isolated, because u has at least c
outgoing edges from C ∪D. Hence, we test for all 0 ≤ x < c− 1 whether the set

Dx := {w ∈ N+[v] \ C | C ⊆ N(w) ∧ deg(w) ≤ |C| + c + x}

contains a clique of size at least x+1. If this is not the case for any x, then C is
a maximal max-c-isolated clique for pivot v. Otherwise, C is removed from the
output.

It remains to check whether C is a proper subset of a clique with another
pivot u < v. This can be tested in the manner described in Sect. 2.3. The
running time of the pivot procedure is dominated by the first maximality test of
the screening stage. For each of the O(2c) enumerated cliques, we have to solve
Maximum Clique up to c times. Since |Dx| < c for all 0 ≤ x < c − 1, this can
be done in O(1.22c) time [14]. The overall running time of this test is then

O(2c · 1.22c · c) = O(2.44c · c).

The running time of the whole enumeration can be bounded in a similar way as
in Sect. 2.2.

Theorem 4. All maximal max-c-isolated cliques of a graph can be enumerated

in O(2.44c · c · m) time.

4 Enumerating Isolated s-Plexes

In many applications such as social network analysis, cliques have been criti-
cized for their overly restrictive nature or modelling disadvantages. Hence, more
relaxed concepts of dense subgraphs such as s-plexes [15, 1] are of interest.

An s-plex is a degree-based relaxation of the clique concept. In a graph G =
(V,E), a subset of vertices S ⊆ V of size k is called an s-plex if the minimum
degree in G[S] is at least k − s. It has been shown that the problem of deciding
whether a graph has an s-plex of size k is NP-complete [1]. We strengthen this
by the corresponding parameterized hardness result. The parameter-preserving
reduction from Clique is given in the full version of this paper. It shows that
Maximum s-plex is W[1]-hard with respect to the combined parameter (s, k)
and thus also if parameterized only by either one of s and k. Therefore, as for
Clique, we rather consider isolation as parameter in terms of studying fixed-
parameter tractability.

We present an algorithm for the enumeration of maximal min-c-isolated s-
plexes that runs in FPT time with respect to parameter c for any constant s. In
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this paper, we have chosen to consider only min-c-isolation, since the enumera-
tion algorithm is easier to describe with this isolation concept. A min-c-isolated
s-plex S contains at least one vertex that has less than c neighbors in V \ S.
Compared to the enumeration of maximal min-c-isolated cliques, we face two ob-
stacles when enumerating maximal min-c-isolated s-plexes. First, we cannot use
the algorithm for the enumeration of minimal vertex covers, since an s-plex does
not necessarily induce an independent set in the complement graph. Instead,
since in an s-plex S of size k every vertex v ∈ S is adjacent to at least k− s ver-
tices, the subgraph induced by S in the complement graph G[S] is a graph with
maximum degree at most s − 1. Consider therefore the following generalization
of a vertex cover:

Definition 3. Given a graph G and a nonnegative integer d, we call a subset

of vertices S ⊆ V a max-deg-d deletion set if G[V \ S] has maximum degree at

most d.

The idea is to enumerate maximal s-plexes in G by enumerating minimal max-
deg-d deletion sets in Ḡ. We present a fixed-parameter algorithm for the enu-
meration of minimal max-deg-d deletion sets that uses the size of the solution
sets as parameter.

Finding a minimum max-deg-d deletion set was also considered by Nishimura
et al. [12], who presented an O((d + k)k+3 · k + n(d + k)) time algorithm for the
decision version. We improve the exponential part of this running time while
also covering the enumeration version. The idea is to pick a vertex v with more
than d neighbors and then branch into d +2 cases corresponding to the deletion
of v or the deletion of one of the d + 1 first neighbors of v:

Lemma 4. Given a graph G and an integer k, all minimal max-deg-d deletion

sets of size at most k can be enumerated in O((d + 2)k · (k + d)2 + m) time.

The second obstacle lies in the fact that given a pivot vertex v, maximal min-c-
isolated s-plexes with pivot v are not necessarily a subset of N+[v], since they
can contain up to s − 1 vertices that are not adjacent to v. We deal with this
by enumerating all maximal min-c-isolated s-plexes for a given pivot set instead
of a single pivot. The pivot set of a min-c-isolated s-plex is defined as the set
that contains the pivot vertex v of the s-plex and those vertices that belong to
the s-plex but are not adjacent to v. The pivot vertex is defined as the vertex
with lowest index among the vertices with less than c neighbors outside of the
s-plex. There has to be at least one such vertex, since otherwise the condition
of min-c-isolation would be violated, but it does not necessarily have to be the
vertex with the lowest index of all vertices in the s-plex.

The enumeration algorithm also consists of the three stages. In the trimming
stage, we build a candidate set C by removing vertices from N(v) that obviously
cannot belong to a min-c-isolated s-plex with pivot v. For each possible pivot
set P with pivot v, we independently enumerate the maximal min-c-isolated s-
plexes. This is done in the enumeration stage by first building the complement
graph G[C ∪ P ] and then enumerating minimal max-deg-(s− 1) deletion sets of
size at most c−1 in G[C ∪ P ]. In the screening stage, we first test whether any of
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the enumerated min-c-isolated s-plexes contains a vertex u < v, where u has less
than c neighbors outside of the s-plex. Then this s-plex has pivot u and not v
and is therefore removed from the output. Finally we perform a maximality test
and remove non-maximal min-c-isolated s-plexes from the output.

Theorem 5. All maximal min-c-isolated s-plexes of a graph can be enumerated

in O((s + 1)c · (s + c) · ns+1 + n · m) time.

Thus, for every fixed s, we obtain a fixed-parameter algorithm for enumerating
all maximal min-c-isolated s-plexes with respect to the parameter c.
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