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Abstract. We do computational studies concerning the enumeration
of maximal isolated cliques in graphs. Isolation, as recently introduced,
measures the degree of connectedness of the cliques to the rest of the
graph. Isolation helps both in getting faster algorithms than for the enu-
meration of maximal general cliques and in filtering out cliques with
special semantics. We perform experiments with synthetic graphs (in
the Gn,m,p model) and financial networks, proposing the enumeration of
isolated cliques as a useful instrument in analyzing financial networks.

1 Introduction

We study the generation of maximal cliques of an undirected graph G = (V, E),
that is, the enumeration of all vertex subsets V ′ ⊆ V such that the induced
subgraph G[V ′] is complete and there is no V ′′ ) V ′ such that G[V ′′] is also
complete. Unfortunately, already finding one maximum-cardinality clique is a
notoriously hard computational problem, being NP-hard [8] as well as W[1]-
hard [7] and hard to approximate [9]. By way of contrast, finding cliques is very
important in many practical applications. Recent papers describe applications
in computational finance [3, 4] as well as computational biochemistry and ge-
nomics [5, 6].

Enumerating all maximal cliques needs exponential time. For instance, a
recent paper by Tomita et al. [14] proved a worst-case time complexity of Θ(3n/3)
for an n-vertex graph, arguing for its optimality due to the fact that there are
example graphs having 3n/3 maximal cliques. Recently, Ito et al. [10] proposed to
restrict the search to certain types of cliques, that is, specifically isolated cliques.
A clique V ′ of k vertices is called c-isolated in a graph G if there are less than c·k
edges leaving the induced subgraph G[V ′] in G. This concept is interesting for
two reasons. First, since one does not search for all maximal cliques any more,
faster enumeration algorithms are possible. Second, isolated cliques may be an
intrinsically relevant concept, because these cliques can represent structures with
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particularly interesting properties that are detected in this way. Ito et al. [10]
stated the linear-time enumerability of isolated cliques (for constant “isolation
factor” c) by claiming an algorithm running in O(4c · c5 ·m) time for an m-edge
graph. Unfortunately, their algorithm is flawed. Hence, in our recent theoretical
work [12], we presented a nontrivially repaired algorithm with the same running
time. Moreover, we introduced two closely related isolation concepts called min-
c-isolation and max-c-isolation, respectively.

Here, we present the following results. First, we give a theoretical improve-
ment for the enumeration of Ito et al.’s isolated cliques, now achieving a running
time of O(2.89c · c2 · m). The main focus of our work, however, is on computa-
tional studies, applying the three isolation concepts to random feature graphs (in
the Gn,m,p model) and financial networks. The random graphs serve as bench-
mark instances for charting the tractability borderlines of our algorithms. We
find for min- and max-isolation that the algorithms are output-sensitive, and
hence lead to very fast clique enumeration for lower values of c. For isolation as
introduced by Ito et al., however, this is not always the case, and sometimes even
for intermediary values of c the enumeration becomes infeasible. Interestingly,
we observe that the practical and theoretical bottlenecks of the algorithm dif-
fer. The financial networks serve as an example of how isolation can be used to
find particularly interesting cliques. In our experiments, we analyze the so-called
clique performance, which represents the profit/loss of the underlying financial
instruments, and observe significant differences between the three isolation con-
cepts.

2 Fundamentals & Algorithms & Implementation Issues

The fundamental strategy and several basic ideas go back to Ito et al. [10]; while
their work contains serious flaws as spotted in [12], it initiated the study of
isolation in context with the enumeration of maximal cliques. Besides sketching
the fundamental algorithmic ideas, we additionally describe a new theoretical
result leading to an improved running time.

Fundamentals. Ito et al. [10] introduced the concept of c-isolation—which, in
the light of the following is called average-c-isolation (avg-c-isolation for short)
in this work—as follows: Let G = (V, E) be an undirected graph and c be a
positive integer. A vertex subset S ⊆ V of size k is called avg-c-isolated if it has
less than c·k outgoing edges, where an outgoing edge is an edge between a vertex
in S and a vertex in V \S. In follow up-work, we further introduced the concepts
of min-c-isolation and max-c-isolation as follows [12]. A vertex set S ⊆ V is min-

c-isolated if there is at least one vertex in S with less than c neighbors in V \S. A
vertex set S ⊆ V is max-c-isolated if every vertex v ∈ S has less than c neighbors
in V \ S. Fig. 1 illustrates the three concepts.

For notational simplification we will mostly use the terms min-isolation, avg-
isolation, and max-isolation. Note that by definition min-c-isolation is weaker
than avg-c-isolation in the sense that every avg-c-isolated clique is also min-c-
isolated but not vice versa. The enumeration of maximal min-c-isolated cliques
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Fig. 1: Isolated 4-vertex cliques for c = 2 and the three isolation concepts. The
dashed lines denote outgoing edges.

yields cliques that are at least as large as and often larger than avg-c-isolated
cliques. By way of contrast, max-c-isolation is stronger than avg-c-isolation. Max-
c-isolation is useful when we want to exclude high-degree vertices from the enu-
merated sets. This can result in the enumeration of smaller cliques than in the
other two cases. The theoretical study [12] of these three concepts led to the
following theorem. Herein, n denotes the number of graph vertices and m the
number of edges.

Theorem 1 ([12]). Maximal avg-c-isolated cliques can be enumerated in O(4c ·
c3 · m) time, maximal min-c-isolated cliques in O(2c · c · m + n · m) time, and

maximal max-c-isolated cliques in O(2.44c · m) time.

Ito et al. [10] only considered avg-c-isolation and claimed a running time of
O(4c · c5 ·m) for the enumeration of maximal avg-c-isolated cliques as their main
result. Besides sketching the algorithms behind Theorem 1, we also prove a new
result, improving the time bound for avg-c-isolated cliques to O(2.89c · c2 · m).

Algorithms. In the following, we focus on describing the algorithm for avg-
isolation. The corresponding algorithms for min-isolation and max-isolation have
the same basic structure [12]; however, they differ in technical details we cannot
go into here. Given a graph G = (V, E) and an isolation factor c, first the vertices
are sorted by their degree such that u < v ⇒ deg(u) ≤ deg(v). The index of a
vertex is its position in this sorted order. Let N+[v] := {u ∈ N [v] | u > v} ∪ {v}
and N−(v) := {u ∈ N(v) | u < v}. In an avg-isolated clique, the vertex with the
lowest index is called the pivot of the clique [10]. Clearly, a pivot has less than c

outgoing edges. Since every avg-isolated clique has a pivot, we can enumerate all
maximal avg-isolated cliques of a graph by enumerating all maximal avg-isolated
cliques with pivot v for each v ∈ V and then removing those avg-isolated cliques
with pivot v that are a subset of an avg-isolated clique with another pivot.

The enumeration of maximal avg-isolated cliques with pivot v for a v ∈ V is
called the pivot procedure. It comprises three successive stages:
Trimming stage. This stage builds in polynomial time a candidate set C that
is a superset of all avg-isolated cliques with pivot v. The set C is initialized
with N+[v], and then vertices that obviously cannot be part of an avg-isolated
clique with pivot v are removed from C. In particular, we remove vertices from c

that have too many neighbors outside of C or too few neighbors in C.
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Enumeration stage. This stage enumerates cliques with pivot v. Let C be the
candidate set after the trimming stage, and |N [v]\C| = d. In total, we can delete
at most c − 1 vertices from N [v], since otherwise v obtains too many outgoing
edges. Therefore, c̃ := c−1−d is the number of vertices that we may still remove
from C. We can enumerate cliques C′ ⊆ C of size at least |C|− c̃ by enumerating
vertex covers1 of size at most c̃ in the complement graph G[C]: First, we enumer-
ate all minimal vertex covers and thus obtain maximal cliques in the candidate
set C. Then, to also capture avg-isolated cliques that are subsets of non-avg-
isolated cliques enumerated this way, for each of these cliques, we enumerate all
maximal subsets that fulfill the isolation condition. It is possible to show [12,
Lemma 1] that given a non-avg-isolated clique C′, we may only remove vertices
from the set of vertices with the c highest indices in order to obtain a maximal
avg-isolated clique that is a subset of C′. This is done in a brute-force way by
enumerating subsets of the set of vertices that may be deleted, and then checking
for each such subset whether removing this subset yields an avg-isolated clique.
This stage has running time O(2c · c6 · m) [12].
Screening stage. In the screening stage, all cliques that are either not avg-
isolated or that are avg-isolated but not maximal are removed. First, avg-
isolation is checked. Next, those cliques that pass the test for isolation are com-
pared pairwise, and we only keep maximal cliques. Finally, we check each clique
that is left for pivot v against each clique obtained during calls to pivot(u)
with u ∈ N−(v), since these are the only cliques that can be superset of a clique
obtained for pivot v. The running time of this stage is O(4c · c3 · m).

Min-isolation and max-isolation lead to conceptually simpler pivot proce-
dures. The new theoretical contribution provided in this paper when compared
to our previous theoretical work [12] is to show an improvement of the screening
stage in the case of the avg-isolation concept.

Suppose that an enumerated avg-isolated clique C with pivot v is not max-
imal. Then there must be a nonempty vertex set S such that C ∪ S is an avg-
isolated clique. Obviously, S ⊆ N [v]\C. Also, S must be a clique and all vertices
in S have to be adjacent to all vertices in C. Let D ⊆ N [v] \ C such that D

contains exactly the vertices that are adjacent to all vertices in C. To test the
maximality of C, we first enumerate all maximal cliques D′ ⊆ D. Then, for
each such clique D′, the set C ∪ D′ is a clique. If C ∪ D′ is also avg-isolated,
then C is clearly not maximal and thus removed from the output. If C ∪ D′ is
not avg-isolated, however, then we have to check whether there is an avg-isolated
subset of C ∪D′ that is also a superset of C. This can be done by removing the
vertices of highest degree from D′ until either C∪D′ becomes avg-isolated or D′

is empty. In the first case, C is not a maximal avg-isolated clique and is thus
removed from the output. In the second case, C is a maximal avg-isolated clique
in C ∪ D′. If this can be shown for all maximal cliques D′ ⊆ D, then C is a

1 A vertex cover of a graph is a subset D of vertices such that each graph edge has at
least one endpoint in D. See Abu-Khzam et al. [1] for algorithm engineering results
in determining minimum-cardinality vertex covers.
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maximal avg-isolated clique in G. With this maximality test, we can improve the
asymptotic running time bound of the enumeration algorithm (cf. Theorem 1).

Theorem 2. Maximal avg-c-isolated cliques of an m-edge graph can be enumer-

ated in O(2.89c · c2 · m) time.

Proof. Since the trimming stage and enumeration stage of the algorithm have not
changed, their running time amounts to O(c4 ·m+2c ·c2 ·c4m) = O(2c ·c6 ·m) [12].
In the screening stage of the pivot procedure, we have to test each clique for
maximality. At most 2c−1 · c cliques are enumerated during the enumeration
stage of the pivot procedure for a pivot v. For any enumerated avg-isolated
clique C, we have to enumerate all maximal cliques in a subset of N [v] \ C.
Since |N [v]\C| ≤ c−1, this can be done in O(3c/3) time [14]. For each pair of an
enumerated avg-isolated clique C and a maximal clique D′, we decide whether a
subset of C∪D′ is avg-isolated by successively removing the vertices with highest
degree from D′. Clearly, this can be done in O(c) time. Overall, one execution of
the screening stage thus has a worst-case running time of O(2c·c)·O(3c/3)·O(c) =
O(2.89c · c2). There are n runs of the screening stage, and together with the
running times of the other stages, we achieve a total worst-case running time of
O(2c · c6 · m) + O(2.89c · c2 · n) = O(2.89c · c2 · m). ⊓⊔

Implementation Issues. We briefly describe some notable differences between
the theoretical algorithms [12] and their actual implementations.2

Min-isolation. In the trimming stage, we remove vertices that have lower index
than the pivot (this differs from the description in [12]). This does not help in
achieving a better worst-case running time, but it speeds up the trimming stage
and prevents the algorithm from needlessly entering the enumeration stage for
vertices with at least c neighbors of lower index. In many instances this provided
a speed-up of factor 3 or more.
Avg-isolation. Since our experiments showed that the enumeration of avg-
isolated subsets of non-avg-isolated cliques was a bottleneck, we introduced an
additional test: We check whether we can obtain an avg-isolated set by gradually
removing the vertices of highest degree. If this is not the case, then no subset of
the clique is avg-isolated. Thus, we can avoid unnecessarily enumerating subsets
of non-avg-isolated cliques. Furthermore, we perform this test also before enter-
ing the enumeration stage, and only enter it when the enumerated cliques have
a chance of being c-isolated. Both tests provided a speed-up of approximately
two orders of magnitude in our experiments.
Max-isolation. The worst-case running time of O(2.44c · c · m) can be shown
using a maximum clique algorithm in the screening stage (for details see [12]).
Running time analysis showed that, unexpectedly, in practice the screening stage
was not the bottleneck of the enumeration algorithm. Therefore, in our imple-
mentation we instead enumerate all cliques in the set of deleted vertices to check

2 The program is written in Objective Caml and consists of about 1600 lines of code.
It is free software and available from http://theinf1.informatik.uni-jena.de/c-isol/.

http://theinf1.informatik.uni-jena.de/c-isol/
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whether an enumerated clique is maximal. This was sufficiently fast, while keep-
ing the implementation simpler.

As maximal clique enumeration algorithm (required for the screening stage
of avg-isolation and max-isolation), we used an improved variant of the standard
Bron–Kerbosch algorithm by Koch [11]. This algorithm was not a bottleneck, in
particular because of its good output-sensitivity (that is, it runs quickly if there
are only few maximal cliques). We also use this algorithm as a comparison point
for the running times of our clique enumeration algorithms.3

3 Experimental Results

Our investigations concentrate on random feature graphs that were created ac-
cording to the Gn,m,p model and on financial networks. All experiments were run
on an AMD Athlon 64 3700+ machine with 2.2GHz, 1M L2 cache, and 3GB
main memory running under the Debian GNU/Linux 4.0 operating system with
the Objective Caml 3.09.2 compiler. Note that for some instances the enumera-
tion of avg-isolated cliques did not terminate because the program exceeded the
memory limit of 3GB or the corresponding run timed out (after half an hour).
This causes some missing data points for avg-isolation in the diagrams.

Synthetic Data. We generated random graphs using the Gn,m,p model (see
Behrisch and Taraz [2] and references therein). The underlying model is that
cliques are defined by features. More precisely, each of n vertices draws each
of m features with probability p, and two vertices are connected by an edge iff
they have at least one feature in common (note that here m does not denote the
number of edges as elsewhere). Since every nonempty intersection of vertex sets
corresponding to some features defines a maximal clique, these graphs contain
very many maximal cliques, and are tough inputs for clique enumeration.

Our main finding is that enumerating min- and max-isolated cliques is feasible
over a far wider range than enumerating general maximal cliques or avg-isolated
cliques, and that the isolation concepts can help keeping the number of enumer-
ated isolated cliques in check even in graphs that contain excessively many maxi-

mal cliques. Furthermore, we observe a difference in output-sensitivity. Whereas
min-isolation seems to be output-sensitive in general and max-isolation in most
instances, avg-isolation had high running times sometimes even for relatively few
enumerated cliques. Starting from a base setting with c = 40, n = 200, m = 45,
and p = 0.1, we examined the effect of varying parameters. Fig. 2a shows the
number of cliques output for varying c averaged over 5 instances. The average
number of maximal cliques is 92611. Starting from c ≈ 80, all maximal cliques are
enumerated using min-isolation. For avg- and max-isolation all maximal cliques
are found with c ≈ 150. In Fig. 2b, we see that the running time of the min-
and max-isolation concepts closely follows the number of cliques output, that is,
the algorithms are output-sensitive. This can not be observed for avg-isolation,

3 Note that we could not perform comparisons with the claimed fastest general clique
enumeration algorithm by Tomita et al. [14], since the code is unavailable.
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Fig. 2: Gn,m,p model with n = 200, m = 45, and p = 0.1. Average running time
for Bron–Kerbosch is 5.06 seconds.

since its running time peaks for intermediary values of c. Notably, for all three
isolation concepts almost all time is spent in the enumeration stage. Therefore,
the increased running time and lack of output-sensitivity for avg-isolation stems
from the enumeration of isolated subsets of non-avg-isolated cliques, since this is
the only part where the enumeration stages differ. Furthermore, this means that
in practice the screening stage, which dominates the overall worst-case running
time, is not the bottleneck of the algorithm. Compared to the Bron–Kerbosch
algorithm, when enumerating the whole set of maximal cliques, all three algo-
rithms are about 4 times slower, but min- and max-isolation are significantly
faster when the output is restricted by a small c (see Fig. 2).

We next examine variation of m (Fig. 3). More features lead to an expo-
nential growth of the number of maximal cliques (Fig. 3a). This growth only
wears off when the graph becomes very dense (m = 85, about 57 % of all pos-
sible edges present). In contrast, the number of min-40-isolated cliques reaches
a plateau, and for the more stringent criteria, we even notice a drop-off already
for m ≥ 30. While for the Bron–Kerbosch algorithm and min-isolation, we have
running times mostly following the number of generated cliques, for max- and
avg-isolation, we have a maximum for m = 35 and m = 45, respectively. Again,
almost all time is spent in the enumeration stage.

Similar observations were made for varying values of p and n. For both p

and n, increasing the parameter value leads to an exponential growth in the
number of maximal cliques of the graph. Again, min- and max-isolated cliques
could be enumerated over a wider range of parameter values than avg-isolated
and maximal cliques. In particular, the algorithms for enumerating min- and
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Fig. 3: Gn,m,p model with c = 40, n = 200, and p = 0.1. The missing point for
avg-isolation is due to the memory limit of the test runs (3 GB).

max-isolated cliques were output-sensitive while this was not the case for avg-
isolation.

Financial Networks. Many works on financial network analysis are based on
market graphs (see, e.g., [13]). We generated market graphs from publicly avail-
able stock data4. A market graph is constructed as follows. Financial instruments
(e.g., stocks or indices) are represented by vertices. For each pair of vertices u, v

there is an edge connecting them if the corresponding correlation coefficient Cuv

based on the price fluctuations of u and v in some prespecified time range ex-
ceeds some prespecified threshold θ, where −1 ≤ θ ≤ 1. Informally speaking,
two instruments u and v have a positive correlation coefficient Cuv if they show
similar daily fluctuations in the prespecified time range, and they have a nega-
tive correlation coefficient if their daily fluctuations behave oppositional. Details
about the construction of market graphs can be found, e.g., in [3].

Experimental Setup. We considered various market graphs based on the
daily fluctuations of several thousand financial instruments during 500 consecu-
tive trading days. Basic properties of such graphs, like degree distribution, edge
density, clustering coefficient, maximum clique size, and maximum independent
set size, have been analyzed by Boginski et al. [3, 4].

The following diagrams rely on data from 2204 financial instruments begin-
ning at 2003-12-02 over 500 consecutive trading days. However, the experiments
were also executed on many other graphs (based on data from other start dates
and other threshold values) for which the following observations also hold true

4 We used the data from finance.yahoo.com.

finance.yahoo.com
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(in the qualitative sense). Note that the graphs do not include financial instru-
ments whose values get below one dollar in the considered time period, since
such “penny stocks” often show strong daily fluctuations, which are addition-
ally biased by the rounding of the available data. In the experiments with fixed
threshold, the threshold is set to θ = 0.5 as proposed by Boginski et al. [4]
in order to ensure that only significantly correlated stocks are adjacent. More-
over, our experiments showed that for θ = 0.5 there is a good balance between
the number of isolated cliques in the graph and the edge density (for very low
threshold levels, the graph gets too dense to contain many isolated cliques, and
for very high threshold levels, the graph can get too sparse to contain interest-
ing cliques of significant size). For threshold θ = 0.5, the graph contains 2204
vertices and 64376 edges and approximately 70000 maximal cliques.

Basic Results. As for the Gn,m,p graphs, we found enumerating min- and
max-isolated cliques to be feasible over a wide range of parameters, while the
Bron–Kerbosch algorithm and the avg-isolation algorithm are sometimes too
slow. For all three isolation concepts and for c ≤ 10 the running time is around
a second. For intermediate isolation factors we observe a peak in the running
time of max- and avg-isolation. Surprisingly, we also find that enumerating all
maximal cliques using the algorithm for min-∞-isolation is faster than Bron–
Kerbosch by one order of magnitude.

The number of enumerated isolated cliques ranges from a few hundred for
very low isolation factors up to all maximal cliques (≈ 70000) for high isolation
factors, where there are generally much more min-isolated cliques than max- and
avg-isolated cliques (up to one order of magnitude). For low isolation factors,
max- and avg-isolated cliques have size at most 10, whereas there are already
min-1-isolated cliques of size ≈ 50. For high isolation factors, the enumerated
cliques have maximum size ≈ 80.

Clique Performance. Boginski et al. [3, 4] suggested the use of clique
analysis for classifying stocks, based on the property that cliques represent sets
of “similar” financial instruments. However, they do not provide any method to
find cliques of good quality. Therefore, we measured the average performance of
the enumerated cliques. The average price of a financial instrument at some given
trading day t is the mean price of the instrument at day t and the 10 trading days
before and after t. Average prices are used to balance stronger daily fluctuations
of financial instruments. The performance in the time interval [t1, t2] (t1 < t2)
of a financial instrument is the average price at day t2 divided by the average
price at day t1. The performance of a clique is the mean performance of its
vertices. The average performance of a set of cliques is the mean performance of
the cliques. We always measure the performance in the time period the market
graph is based on.

We can observe (Fig. 4a) that the performance of the enumerated min-, max-,
and avg-isolated cliques is better for lower isolation factors and generally ex-
ceeds the performance of all maximal cliques. For higher isolation factors, the
min-isolated cliques show a performance which is similar to the average per-
formance of all vertices in the graph. Most notably, max-isolated cliques have
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Fig. 4: Average clique performance in a market graph based on 500 consecu-
tive trading days beginning at 2003-12-02. Note that the performance of the
NASDAQ in the considered time period is 1.01.

especially high performance for intermediate isolation levels; we can observe a
peak of the performance for max-isolation around c = 100. Avg-isolation seems
to perform similarly as max-isolation, but we usually observe running time or
memory consumption problems for intermediate isolation levels. For very high
isolation factors, all three isolation concepts generate all maximal cliques and
therefore obviously yield the same average performance. In general, the described
effects depend on the underlying graph and the performance of the overall mar-
ket and are more or less pronounced. Note that for low isolation factors (c ≤ 20)
we could not observe a significant general difference of the performance of the
three isolation concepts. In our example (Fig. 4a), max- and avg-isolation are
slightly better for low isolation factors, but there are other graphs (based on
other time periods), for which min-isolation performs better. Note that the av-
erage performance of all financial instruments in the considered time period is
approximately 1.19. Surprisingly, the maximal cliques have an average perfor-
mance of about 0.99. This is caused by financial instruments with a particularly
bad performance that are included in many maximal cliques, but not in isolated

maximal cliques.

When varying the threshold value, Fig. 4b shows that the performance of
max-isolation is relatively independent of the threshold level, whereas min-
isolated and all maximal cliques perform better for higher threshold levels. Note
that this only holds true for low isolation factors c ≤ 100, since for higher iso-
lation factors the performance of all three isolation concepts gets closer to the
performance of all maximal cliques.
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Possible Applications. We believe that especially max-isolated cliques
have some interesting properties with respect to the average clique performance:
First of all, the average performance of max-isolated cliques is relatively indepen-
dent from the chosen threshold values. This is beneficial in practice, as finding
a good threshold value is usually a relatively difficult task. Moreover, looking
more closely at the cliques responsible for the peak of the performance for inter-
mediate isolation levels, we observe that these cliques represent some niche in
the market. For instance, in Fig. 4a the peak is caused by American raw mate-
rial, oil, and energy stocks, and by related industries like transportation, pipeline
construction, and refineries. This peak is less pronounced in graphs based on ear-
lier time periods (that is, beginning before 2003-12-02) and becomes even more
pronounced for graphs based on later time periods (that is, beginning after 2003-
12-02). This indicates that max-isolation can be useful to detect market trends.
Finally, isolated cliques performed better than general maximal cliques. Hence,
we can employ isolation to filter out financial instruments with bad performance
when enumerating cliques. This could provide a new alternative for investors to
classify financial instruments (using clique analysis as proposed by Boginski et
al. [3]). Here, a more thorough and detailed study is necessary, cooperating with
financial experts.

4 Conclusion and Outlook

Our results indicate the relevance of the newly introduced isolation concepts [12]
in comparison with the older avg-isolation [10]. For min- and max-isolation, the
enumeration algorithms show output-sensitivity. Therefore, for both of these iso-
lation concepts the restricted number of cliques output can make enumeration
algorithms for isolated cliques much faster than the standard Bron–Kerbosch
algorithm. However, for avg-isolation, further algorithmic improvements have to
be made in order to obtain output-sensitivity. In particular, the enumeration of
isolated subsets of non-avg-isolated cliques needs to be improved. For certain in-
stances the c-isolation algorithms are faster than Bron–Kerbosch even for c = ∞,
which results in the same output as the Bron–Kerbosch algorithm has. It would
be interesting to see whether we could further optimize our implementations
for this goal and for which kind of graphs we see a gain over Bron–Kerbosch.
Our findings with financial networks support that isolation provides “interest-
ing” cliques. In particular, max-isolated cliques perform better for intermediary
isolation factors. This should be analyzed more thoroughly (with the help of fi-
nancial experts) to better understand what distinguishes stocks in max-isolated
cliques from those in general maximal cliques or min-isolated cliques, and hence
what leads to the difference in clique performance. Furthermore, are there any
application scenarios in which the relatively weak min-isolation concept is useful?
For example, does the pivot element of a min-isolated clique which has the fewest
(and thus less than c) neighbors outside of the clique somehow characterize the
whole clique?
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