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Abstract. Given a graph G and an integer k ≥ 0, the NP-complete
Induced Matching problem asks for an edge subset M such that M is
a matching and no two edges of M are joined by an edge of G. The com-
plexity of this problem on general graphs as well as on many restricted
graph classes has been studied intensively. However, little is known about
the parameterized complexity of this problem. Our main contribution is
to show that Induced Matching, which is W[1]-hard in general, admits
a linear problem kernel on planar graphs. Additionally, we generalize a
known algorithm for Induced Matching on trees to graphs of bounded
treewidth using an improved dynamic programming approach.

1 Introduction

A matching in a graph is a set of edges no two of which have a common endpoint.
An induced matching M of a graph G = (V, E) is an edge-subset M ⊆ E such
that (1) M is a matching and (2) no two edges of M are joined by an edge of G.
In other words, the subgraph induced by V (M) is precisely the graph consisting
of the edges in M . Let im(G) denote the size of a largest induced matching in G.
The decision version of the Induced Matching problem asks, given a graph G
and an integer k, whether G has an induced matching of size at least k. The
optimization version asks for an induced matching of maximum size. The In-

duced Matching problem was introduced as a variant of the maximum match-
ing problem and motivated by Stockmeyer and Vazirani [22] as the “risk-free”
marriage problem3. This problem has been intensively studied in recent years.
It is known to be NP-complete for planar graphs of maximum degree 4 [17], bi-
partite graphs of maximum degree 3, r-regular graphs for r ≥ 5, line-graphs and
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3 Find the maximum number of pairs such that each married person is compatible
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Hamiltonian graphs [18]. The problem is polynomial time solvable for trees [23]
and weakly chordal graphs [6]. There exist many other results on special graph
classes (see, e.g., [5,12,19]). Regarding polynomial-time approximability, it is
known that the Induced Matching problem is APX-hard on 4r-regular graphs,
for all r ≥ 1 [23], and bipartite graphs with maximum degree 3 [10]. Moreover,
for r-regular graphs it is NP-hard to approximate Induced Matching within

a factor of r/2O(
√

ln r) [8]. There exists an approximation algorithm for the prob-
lem on d-regular graphs (d ≥ 3) with performance ratio d − 1 [10], which has
subsequently been improved to 0.75d + 0.15 [13].

In contrast to these results, little is known about the parameterized com-
plexity of Induced Matching. To the best of our knowledge, the only known
result is that the problem is W [1]-hard (with respect to the matching size as
parameter) in the general case [20], and hence unlikely to be fixed-parameter
tractable. Therefore, it is of interest to study the parameterized complexity of
the problem in those restricted graph classes where it remains NP-complete. In
this paper, we focus on planar graphs. The parameterized complexity of various
NP-complete problems in planar graphs has already been studied. An interesting
aspect of such studies are linear problem kernels. The intuitive idea behind ker-
nelization is that a polynomial-time preprocessing step removes the “easy” parts
of a problem instance such that only the “hard” core of the problem remains,
which can then be solved by other methods. We call such a core a linear kernel
if we can prove that its size is a linear function of the parameter. For a recent
survey about problem kernelization, see [14].

Using a newly introduced technique, the question of whether Dominating

Set has a linear kernel in planar graphs was answered positively by Alber et
al. [2]. The kernel size has subsequently been improved by Chen et al. [7]. More-
over, they show lower bounds on the kernel size for Dominating Set, Vertex

Cover, and Independent Set in planar graphs. The technique developed by
Alber et al. [2] has been exploited by Guo et al. [16] in developing a linear
kernel for Full-Degree Spanning Tree, a maximization problem. Moreover,
Fomin and Thilikos [11] extended the technique to graphs of bounded genus.
Very recently, Guo and Niedermeier [15] gave a generic kernelization framework
for NP-hard problems in planar graphs based on that technique. Thus far, the
technique has been applied to problems whose solutions are vertex subsets. We
give the first application of this technique for a maximization problem whose
solutions are edge subsets.

As our main result, we show that Induced Matching in planar graphs
admits a linear problem kernel. We adapt and extend the known kernelization
technique [2,16,15]. The corresponding data reduction rules can be carried out
in linear time. Moreover, we generalize an algorithm for Induced Matching

on trees by Zito [23] to graphs of bounded treewidth using an improved dynamic
programming approach, which runs in O(4ω · n) time, where ω is the width of
the given tree decomposition.

In Section 2, we start out with some basic definitions and notation. In Sec-
tion 3, we present the kernelization proof, which is the main technical contribu-
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tion of this paper. Finally, in Section 4, we outline the algorithm on graphs of
bounded treewidth and give an outlook on possible future research.

2 Preliminaries

In this paper, we deal with fixed-parameter algorithms that emerge from the field
of parameterized complexity [9,21]. A parameterized problem is fixed-parameter
tractable if it can be solved in f(k) · nO(1) time, where f is a computable function
depending only on the parameter k. A common method to prove that a problem
is fixed-parameter tractable is to provide data reduction rules that lead to a
problem kernel. Given a problem instance (I, k), a data reduction rule replaces
that instance by another instance (I ′, k′) in polynomial time, such that (I, k) is
a yes-instance iff (I ′, k′) is a yes-instance. An instance to which none of a given
set of data reduction rules applies is called reduced with respect to this set of
rules. A parameterized problem is said to have a problem kernel if the resulting
reduced instance has size f(k) for a function f depending only on k. If f(k) = c·k
for some constant c, then we call the kernel linear. The basic complexity class
for fixed-parameter intractability is W [1] [9].

In this paper we assume that all graphs are simple and undirected. For a
graph G, let V (G) denote its vertex set and E(G) denote its edge set. For a
subset V ′ ⊆ V , let G[V ′] denote the subgraph of G induced by V ′. Let G\V ′ :=
G[V \V ′], and for v ∈ V , let G− v := G\ {v}. Let N(v) := {u ∈ V : {u, v} ∈ E}
be the (open) neighborhood of v. We assume that paths are simple, that is, each
vertex appears at most once in a path. A path P from a to b is denoted as a
vector P = (a, . . . , b), and a and b are called the endpoints of P . The length of a
path (a1, a2, . . . , aq) is q−1, that is, the number of edges on it. For an edge set M
we define V (M) :=

⋃
e∈M e. The distance d(u, v) between two vertices u, v is the

length of a shortest path between them. The distance between two edges e1, e2

is the minimum distance between two vertices v1 ∈ e1 and v2 ∈ e2.
If a graph can be drawn in the plane without edge crossings then it is planar.

A plane graph is a planar graph with a fixed embedding in the plane. Given a
plane graph, a cycle C = (a, . . . , a) of length at least three encloses an area A
of the plane. The cycle C is called the boundary of A, all vertices in the area A
are inside A. A vertex is strictly inside A if it is inside A and not part of C.

3 A Linear Kernel on Planar Graphs

In order to show our kernel, we employ the following data reduction rules. Com-
pared to the data reduction rules applied in other proofs of planar kernels [2,7,16],
these data reduction rules are quite simple and can be carried out in O(n + m)
time on general graphs and thus in O(n) time in planar graphs.

(R0) Degree Zero Rule: Delete vertices of degree zero.
(R1) Degree One Rule: If a vertex u has two distinct neighbors x, y of degree 1,

then delete x.
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(R2) Degree Two Rule: If u and v are two vertices such that |N(u)∩N(v)| ≥ 2
and if there exist two vertices x, y ∈ N(u)∩N(v) with deg(x) = deg(y) = 2,
then delete x.

Note that these data reduction rules are parameter-independent. The following
is our main theorem whose proof spans the remainder of this section.

Theorem 1. Let G = (V, E) be a planar graph reduced with respect to the rules
R0, R1, and R2. Then |V | ≤ c · im(G) for some constant c. That is, the Max-

imum Induced Matching problem in planar graphs admits a linear problem
kernel.

The basic observation is that if M is a maximum induced matching of a
graph G = (V, E) then for each vertex v ∈ V there exists a u ∈ V (M) such
that d(u, v) ≤ 2. Otherwise, we could add edges to M and obtain a larger
induced matching. Since every vertex in the graph is within distance at most
two to some vertex in V (M), we know, roughly speaking, that the edges in M
have distance at most four to other edges in M . This leads to the idea of regions
“in between” matching edges that are close to each other. We will see that these
regions cannot be too large if the graph is reduced with respect to the above
data reduction rules. Moreover, we show that there cannot be many vertices that
are not contained within such regions.

This idea of a region decomposition was introduced in [2], but the definition
of a region as it appears there is much simpler since the regions are defined
between vertices, and they are smaller. The remaining part of this section is
dedicated to the proof of Theorem 1. First, in Section 3.1 we show how to find a
“maximal region decomposition” of a reduced graph that contains only O(|M |)
regions, where M is the size of a maximum induced matching of the graph. Then,
in Section 3.2 we show that a region in such a maximal region decomposition
contains only a constant number of vertices. Finally, in Section 3.3 we show that
in any reduced graph there are only O(|M |) vertices which lie outside of regions.

3.1 Finding a Maximal Region Decomposition

Definition 1. Let G be a plane graph and M a maximum induced matching
of G. For edges e1, e2 ∈ M , a region R(e1, e2) is a closed subset of the plane
such that

1. the boundary of R(e1, e2) is formed by two length-at-most-four paths
– (a1, . . . , a2), a1 6= a2, between a1 ∈ e1 and a2 ∈ e2,
– (b1, . . . , b2), b1 6= b2, between b1 ∈ e1 and b2 ∈ e2, and

by e1 if a1 6= b1 and e2 if a2 6= b2;
2. for each vertex x in the region R(e1, e2), there exists a y ∈ V ({e1, e2}) such

that d(x, y) ≤ 2;
3. no vertices inside the region other than endpoints of e1 and e2 are from M .

The set of boundary vertices of R is denoted by δR. We write V (R(e1, e2)) to
denote the set of vertices of a region R(e1, e2), that is, all vertices strictly in-
side R(e1, e2) together with the boundary vertices δR. A vertex in V (R(e1, e2))
is inside R.
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Fig. 1. An example of an M -region decomposition: black vertices denote bound-
ary vertices; gray vertices lie strictly inside a region and white vertices lie outside
of regions. Each region is hatched with a different pattern. Note the special cases,
as for instance regions that consist of a path like the region between e1 and e2,
or regions that are created by only one matching edge (the region on the left
side of e3).

Note that the two enclosing paths may be identical; the corresponding region
then consists solely of a simple path of length at most four. Note also that e1

and e2 may be identical.

Definition 2. An M -region decomposition of G = (V, E) is a set R of regions
such that no vertex in V lies strictly inside more than one region from R. For
an M -region decomposition R, we define V (R) :=

⋃
R∈R V (R). An M -region

decomposition R is maximal if there is no R /∈ R such that R ∪ {R} is an
M -region decomposition with V (R) ( V (R) ∪ V (R).

For an example of an M -region decomposition, see Fig. 1.

Lemma 1. Given a plane reduced graph G = (V, E) and a maximum induced
matching M of G, there exists an algorithm that constructs a maximal M -region
decomposition with O(|M |) regions.

Lemma 1 can be proved by exhibiting a greedy algorithm that builds a maximal
M -region decomposition in a stepwise manner by searching a region of maximal
size that is not yet in the region decomposition at the actual step of the algo-
rithm. Since this approach is similar to the algorithms by Alber et al. [2] and
Guo et al. [16], we omit the details here.

3.2 Bounding the Size of a Region

To upper-bound the size of a region R we make use of the fact that any vertex
strictly inside R has distance at most two from some vertex in δR. For this rea-
son, the vertices strictly inside R can be arranged in two layers. The first layer
consists of the neighbors of boundary vertices, and the second of all the remain-
ing vertices, that is, all vertices at distance at least two from every boundary
vertex. The proof strategy is to show that if any of these layers contains too
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Fig. 2. A diamond (left) and an empty diamond (right) in a reduced plane graph.

many vertices then there exists an induced matching M ′ with |M ′| > |M |. An
important structure for our proof are areas enclosed by 4-cycles, called diamonds.

Definition 3. Let u and v be two vertices in a plane graph. A diamond4 is a
closed area of the plane with two length-2 paths between u and v as boundary. A
diamond D(u, v) is empty, if every edge e in the diamond is incident to either
u or v.

Fig. 2 shows an empty and a non-empty diamond. In a reduced plane graph
empty diamonds have a restricted size. We are especially interested in the max-
imum number of vertices strictly inside an empty diamond D(u, v) that have
both u and v as neighbors. The following lemma is easy to show.

Lemma 2. Let D(u, v) be an empty diamond in a reduced plane graph. Then
there exists at most one vertex strictly inside D(u, v) that has both u and v as
neighbors.

Lemma 2 shows that if there are more than three edge-disjoint length-two paths
between two vertices u, v, then there must be an edge e in an area enclosed by
two of these paths such that e is not incident to u or v. This fact is used in
the following lemma to show that the number of length-two paths between two
vertices of a reduced plane graph is bounded.

Lemma 3. Let u and v be two vertices of a reduced plane graph G such that
there exists two distinct length-2 paths (u, x, v) and (u, y, v) enclosing an area A
of the plane. Let M be a maximum induced matching of G. If neither x nor y
is an endpoint of an edge in M and no vertex strictly inside A is contained
in V (M), then the following holds:

If neither u nor v is an endpoint of an edge in M , then there are at most 5
edge-disjoint length-2 paths between u and v inside A. If exactly one of u or v
is an endpoint of an edge in M , then there are at most 10 such paths, and if
both u and v are endpoints of edges in M , then there are at most 15 such paths.

4 In standard graph theory, a diamond denotes a 4-cycle with exactly one chord. We
abuse this term here. Note that diamonds also play an important role in proving
linear problem kernels in planar graphs for other problems [2,15].
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v
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Fig. 3. Left: An embedding of the vertices w1, . . . , w6 for the first case in the
proof of Lemma 3. Right: An embedding of 16 neighbors of u and v for the last
case of the proof. The diamonds are shaded and the “isolation paths” are drawn
with dashed lines.

Proof. The idea is to show that if there are more than the claimed number of
length-2 paths between u and v, then we can exhibit an induced matching M ′

with |M ′| > |M |, which would then contradict the optimality of M .

First, we consider the case when neither u nor v is contained in V (M).
Suppose for the purpose of contradiction that there are 6 common neighbors
w1, . . . , w6 of u and v that lie inside A (that is, strictly inside and on the enclosing
paths). Without loss of generality, suppose that these vertices are embedded as
shown in Fig. 3 (left-hand side), with w1 and w6 lying on the enclosing paths.
Consider the diamond D with the boundary induced by the vertices u, v, w2, w5.
Since w3 and w4 are strictly inside D and are incident to both u and v, by
Lemma 2, we know that D is not empty. That is, there exists an edge e in D
which is not incident to u or v. Clearly e is incident to neither w1 nor w6 and the
endpoints of e are at distance at least 2 from every vertex in V (M). Therefore,
we can add e to M and obtain a larger induced matching, which contradicts the
optimality of M .

Next, consider the case when exactly one of u or v is an endpoint of an
edge e in M . Using the same idea as above, it is easy to see that if there exist 11
length-2 paths between u and v, then there are at least two non-empty diamonds
(using (u, w1, v), (u, w6, v) and (u, w11, v) as “isolation paths”) whose boundaries
share only u and v. We can then replace e in M by edges e1 and e2, one from
each nonempty diamond, and obtain a larger induced matching.

The last case, when both u and v are endpoints of edges in M , can be handled
in the same way using three non-empty diamonds (see Fig. 3). ut

Lemma 3 is needed to upper-bound the number of vertices inside and outside of
regions that are connected to at least two boundary vertices.

The next two lemmas are needed to upper-bound the number of vertices that
are connected to exactly one boundary vertex. First, Lemma 4 upper-bounds the
number of such vertices under the condition that they are contained in an area
which is enclosed by a short cycle. Lemma 4 is then used in Lemma 5 to upper-
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Fig. 4. Worst-case embeddings to illustrate Lemma 4.

bound the total number of such vertices for a given boundary vertex. The proofs
of both lemmas are omitted due to space restrictions.

Lemma 4. Let u be a vertex in a reduced plane graph G and let v, w ∈ N(u) be
two distinct vertices that have distance at most three in G − u. Let P denote a
shortest path between v and w in G − u and let A denote the area of the plane
enclosed by P and the path (v, u, w). If there are at least 9 neighbors of u strictly
inside A, then there is at least one edge strictly inside A.

Fig. 4 shows, for two different situations, the maximum number of neighbors
of u that can be strictly inside A such that no edge lies strictly inside A.

Lemma 5. Let u be a boundary vertex of a region R(e1, e2) in a reduced plane
graph G, and let M be a maximum induced matching of G. If u has at least 41
neighbors strictly inside R that are not adjacent to any other boundary vertex,
then we can find an induced matching M ′ with |M ′| > |M |.

Using Lemma 3 and Lemma 5, we can now upper-bound the number of vertices
inside a region.

Lemma 6. A region R(e1, e2) of an M -region decomposition of a reduced plane
graph contains O(1) vertices.

Proof. We prove the lemma by partitioning the vertices strictly inside R(e1, e2)
into two sets A and B, where A consists of all vertices at distance exactly one
from some boundary vertex, and B consists of all vertices at distance at least
two from every boundary vertex, and then showing that |A| and |B| are upper-
bounded by a constant.

To this end, partition A into A1 and A2, where A1 contains all vertices in A
that have exactly one neighbor on the boundary, and A2 all vertices that have
at least two neighbors on the boundary. To upper-bound the size of A1, observe
that due to Lemma 5, a vertex v ∈ δR on the boundary can have at most 41
neighbors in A1. Since a region has at most ten boundary vertices, we conclude
that A1 contains at most 410 vertices.

Next we upper-bound the size of A2. Consider the planar graph G′ induced
by δR∪A2. Every vertex in A2 is adjacent to at least two boundary vertices in G′.
Replace every vertex v ∈ A2 with an edge connecting two arbitrary neighbors
of v on the boundary. Merge multiple edges between two boundary vertices
into a single edge. Since G′ is planar, the resulting graph must also be planar.
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As |δR| ≤ 10, using the Euler formula we conclude that the resulting graph
has at most 3 · 10 − 6 = 24 newly added edges. By Lemma 3, each such edge
represents at most 15 length-two paths, and thus |A2| ≤ 24 · 15 = 360.

To upper-bound the size of B, observe that G[B] must be a graph without
edges (that is, B is an independent set). By the Degree One Rule, each vertex
in A has at most one neighbor in B of degree one. Therefore, there are O(1)
degree-one vertices in B. To bound the number of degree-at-least-two vertices
in B, we use the same argument as the one used to bound the size of A2.
Since |A| = O(1), there is a constant number of degree-at-least-two vertices
in B. Therefore |B| = O(1). This completes the proof. ut

Proposition 1. Let G be a reduced plane graph and let M be a maximum in-
duced matching of G. There exists an M -region decomposition such that the total
number of vertices inside all regions is O(|M |).

Proof. Using Lemma 1, there exists a maximal M -region decomposition for G
with at most O(|M |) regions. By Lemma 6, each region has a constant number
of vertices. Thus there are O(M) vertices inside regions. ut

3.3 Bounding the Number of Vertices Lying Outside of Regions

In this section, we upper-bound the number of vertices that lie outside of regions
of a maximal M -region decomposition. The strategy to prove this bound is
similar to that used in the last section. We subdivide the vertices lying outside
of regions into several disjoint subsets and upper-bound their sizes separately.

Note again that the distance from any vertex of the graph to a vertex in V (M)
is at most two. We partition the vertices lying outside of regions into two sets A
and B, where A is the set of vertices at distance exactly one from some vertex
in V (M), and B is the set of vertices at distance at least two from every vertex
in V (M). We bound the sizes of these two sets separately.

Partition A into two subsets A1 and A2, where A1 is the set of vertices that
have exactly one boundary vertex as neighbor, and A2 is the set of vertices
that have at least two boundary vertices as neighbors. Note that each vertex v
in A can be adjacent to exactly one vertex u ∈ V (M). For if it is adjacent to
distinct vertices u, w ∈ V (M), then the path (u, v, w) can be added to the region
decomposition, contradicting its maximality (recall that regions can consist of
simple paths between two vertices in V (M)). To bound the number of vertices
in A1 we need the following lemma, which is easy to prove.

Lemma 7. Let v be a vertex in A1 and let u be its neighbor in V (M). Then for
all w ∈ V (M) \ {u}, the distance between v and w in G − u is at least three.

Lemma 8. Given a maximal M -region decomposition consisting of O(|M |) re-
gions, the set A contains O(|M |) vertices.

Proof. To bound the size of A1, we claim that each vertex u ∈ V (M) has at
most 20 neighbors in A1. Suppose, for the purpose of contradiction, that 21
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vertices v1, . . . , v21 in A1 are adjacent to u ∈ V (M). Also assume that they are
embedded in a clockwise fashion around u in that order. Let e be the edge in M
incident to u. First, suppose that v1 and v11 have distance at least four in G−u.
Then there exist edges ea, eb in G − u incident to v1 and v11, respectively, that
form an induced matching of size 2. Moreover by Lemma 7, the endpoints of ea

and eb are not adjacent to any vertex of V (M) in G − u. Therefore, M ′ =
(M \ {e}) ∪ {ea, eb} is an induced matching of size larger than that of M , a
contradiction to the maximum cardinality of M . The same holds if the distance
between v11 and v21 is at least four in G − u. Therefore assume that in the
graph G − u, d(v1, v11) ≤ 3 and d(v11, v21) ≤ 3. Let P1 and P2 be shortest
paths in G − u between v1 and v11 and between v11 and v21, respectively. Note
that due to Lemma 7 these two paths cannot contain any vertex from V (M).
By Lemma 4, the areas enclosed by P1 and (v1, u, v11), and P2 and v11, u, v21,
respectively, contain an edge strictly inside them. The edge e can be replaced
by these two edges to obtain an induced matching of size larger than M , a
contradiction to the maximum cardinality of M . This proves our claim. Since
there are exactly 2 |M | vertices in V (M), this shows that the total number of
vertices in A1 is at most 40 |M |.

Next, we bound the size of A2. Every vertex v in A2 is adjacent to a vertex u ∈
V (M) and some boundary vertex w /∈ V (M). Vertex w must be adjacent to u,
for otherwise there is a path consisting of the vertices (u, v, w) and some subpath
on the boundary where w lies which can be added to the region decomposition R,
contradicting its maximality. Since there are O(|M |) regions, there are O(|M |)
possible boundary vertices adjacent to a vertex in V (M). By Lemma 3, given a
vertex x ∈ V (M) and y ∈ V \ V (R) there can be at most 10 vertices adjacent
to both x and y. This shows that A2 contains O(|M |) vertices. ut

It remains to bound the number of vertices in B, that is, the number of vertices
outside of regions that are at distance at least two from every vertex in V (M).

Lemma 9. Given a maximal M -region decomposition with O(|M |) regions, the
set B contains O(|M |) vertices.

Proof. To bound the size of B, observe that G[B] is a graph without edges. Fur-
thermore, observe that N(B) ⊆ A∪A′, where A′ is the set of boundary vertices
in the M -region decomposition that are different from V (M). By Lemma 8 and
since the boundary of each region contains a constant number of vertices, the
set C := A ∪ A′ contains O(|M |) vertices.

First, consider the vertices in B that have degree one. Obviously, there can
be at most |C| such vertices due to the Degree One Rule. The remaining vertices
are adjacent to at least two vertices in C. We can use an argument similar to the
one used in the proof of Lemma 6 (using the Euler formula) to show that there
are O(|C|) degree-at-least-two vertices in B. Thus, |B| = O(|C|) = O(|M |). ut

Proposition 2. Given a maximal M -region decomposition with O(|M |) regions,
the number of vertices that lie outside of regions is O(|M |).

Proof. Follows from Lemmas 8 and 9. ut
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Using Propositions 1 and 2, we can show that, given a reduced plane graph G and
a maximum induced matching M of G, there exists an M -region decomposition
with O(|M |) regions such that the number of vertices inside and outside of
regions is O(|M |). This shows the O(|M |) upper bound on the number of vertices
as claimed in Theorem 1.

4 Further Results and Outlook

Zito [23] developed a linear-time dynamic programming algorithm to solve In-

duced Matching on trees. We generalize this approach to obtain a linear-
time algorithm on graphs of bounded treewidth [4]. It is relatively easy to see
that a standard dynamic programming approach would result in a running time
of O(9ω · n), where ω is the width of the given tree decomposition. With an im-
proved dynamic programming algorithm, we obtain a running time of O(4ω ·n).
The description of this algorithm, which is inspired by a similar result for Dom-

inating Set [3], is omitted due to space restrictions.

Theorem 2. Let G = (V, E) be a graph with a given nice tree decomposi-
tion ({Xi | i ∈ I}, T ). Then, the size of a maximum induced matching of G
can be computed in O(4ω · n) time, where n := |I| and ω denotes the width of
the tree decomposition.

As our main result, we have shown that Induced Matching in planar graphs
admits a linear problem kernel. The data reduction rules for the planar case are
very simple and the kernelization can be done in linear time.

A possible future research topic could be search tree algorithms for planar
graphs. For Dominating Set in planar graphs, there exists a search tree al-
gorithm [1], and it is open whether a similar result for Induced Matching

on planar graphs is possible. Investigating the parameterized complexity of In-

duced Matching on other restricted classes of graphs may be of interest. We
can show simple problem kernelizations for bounded-degree graphs, graphs of
girth at least 6, C4-free bipartite graphs, and line graphs. A class of major in-
terest are bipartite graphs, where the parameterized complexity of Induced

Matching is open.
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