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Abstract. For a fixed connected graph H , we consider the NP-complete
H-packing problem, where, given an undirected graph G and an inte-
ger k ≥ 0, one has to decide whether there exist k vertex-disjoint copies
of H in G. We give a problem kernel of O(k|V (H)|−1) vertices, that is,
we provide a polynomial-time algorithm that reduces a given instance of
H-packing to an equivalent instance with at most O(k|V (H)|−1) vertices.
In particular, this result specialized to H being a triangle improves a
problem kernel for Triangle Packing from O(k3) vertices by Fellows
et al. [WG 2004] to O(k2) vertices.

1 Introduction

To solve NP-hard problems, polynomial-time preprocessing is a natural ap-
proach. Problem kernelization is a preprocessing technique originating from the
field of parameterized algorithmics [8,23]. A kernelization is an algorithm that,
given a problem instance I with parameter k, replaces I by another instance I ′

with parameter k′ ≤ k in polynomial time, such that I with parameter k is a
yes-instance if and only if I ′ with parameter k′ is a yes-instance, and |I ′| ≤ g(k)
for some function g. The instance I ′ is called the problem kernel. Besides its
theoretical significance in parameterized complexity analysis, problem kernel-
ization has also practical applications as a preprocessing step to get smaller
problem instances. For instance, for the Vertex Cover problem, a kernel with
at most 2k vertices can be achieved [22,5], where k is the vertex cover number of
the given graph. For the (undirected) Feedback Vertex Set problem, a kernel
of O(k3) vertices [2] has recently been improved to O(k2) vertices [26], where k is
the feedback vertex set number of the given graph. Another “success story” for
kernelization is Cluster Editing. Here, a first problem kernel had O(k2) ver-
tices [14], where k is the number of allowed editing operations. The kernelization
has been gradually improved [11,25], and the best-known kernel size is now 4k
vertices [15]. For more about kernelization we refer to a recent survey by Guo and
Niedermeier [16]. In this work, we improve a bound of 108k3−73k2−18k vertices
for a problem kernel for the problem of packing h vertex-disjoint triangles [9]
to a bound of 45k2 vertices. Moreover, we generalize our approach to a prob-
lem kernel of O(k|V (H)|−1) vertices for the problem of packing k vertex-disjoint
copies of a fixed connected graph H .

⋆ Supported by the DFG, project AREG, NI 369/9.
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The H-Packing problem is defined as follows.

H-Packing

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does G contain k vertex-disjoint copies of H?

If H is simply an edge between two vertices, then this problem is equivalent
to Maximum Matching, which can be solved in polynomial time. If H is a
connected graph with at least three vertices, then H-Packing becomes NP-
complete [18].

H-Packing can be solved in 2|V (H)|knO(1) time with a randomized algo-
rithm [20] and in 16|V (H)|knO(1) time [19] with a deterministic algorithm (see
also [6] for an improved derandomization). H-Packing has been studied quite
intensively for small graphs H . If H is a triangle, it is known that the problem
is APX-hard and there exists a factor-1.2 polynomial-time approximation on
graphs with maximum degree four [21]. Furthermore, it is NP-hard to approx-
imate within ratio 139/138 [7]. If H is a path on three vertices, there exists a
kernel with 15k vertices [24], which has been improved to 7k vertices [29]. The
best-known parameterized algorithm runs in 2.483knO(1) time [12]. Both variants
(that is, H being a triangle and H being a path on three vertices) can be easily
reduced to 3-Set Packing, for which the following results exist. The currently
best deterministic parameterized algorithm runs in 3.523knO(1) time [28] and the
best randomized algorithm runs in 23knO(1) time [20]. A weighted variant of the
problem can be solved in 10.63knO(1) time with a deterministic algorithm and
in 7.563knO(1) time with a randomized algorithm [27].

An interesting question in parameterized complexity theory is the existence
of lower bounds for kernel sizes. Up to now, we are aware of lower bounds on the
constant factor of a linear kernel (that is, of size ck for some constant c) for Ver-

tex Cover, Independent Set, and Dominating Set on planar graphs [4].
Moreover, it is known that several problems do not admit a polynomial-size
kernel [3,13] (the existence of polynomial-size kernels for these problems would
imply the collapse of the polynomial hierarchy to the third level). However, to
the best of our knowledge, there is no example of a problem that does admit
a polynomial-size kernel, but no linear-size kernel. Fellows et al. [9] conjectured
that Kt-Packing, that is, packing cliques on t vertices, might be a candidate
for a problem whose kernel cannot be smaller than O(kt) vertices. However, our
result for H-Packing directly shows that an O(kt−1)-vertex kernel is possible.
Our technique differs from the technique used by Fellows et al. [9] in how we
analyze an initially computed greedy packing of triangles based on which the
size bound of the whole kernel is derived. The drawback of their method is, as
they state, that it is not obvious how to generalize it to H-Packing. Our ap-
proach combines ideas from an improved kernelization of Hitting Set [1] and
from problem kernels for generalized matching and set packing problems [10]
to achieve this. The O(k3)-vertex kernel by Fellows et al. [9] is based on crown
decompositions ; while we also apply the idea behind crown decompositions, we
will see that it is actually not necessary to compute the decomposition to derive
the kernel. This does not improve on the worst-case running time of the kernel-
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ization, but might be interesting for practical purposes and would probably also
work similarly for other applications of the crown decomposition technique.

Due to the lack of space some details are omitted.

2 Preliminaries

In this paper, all graphs are simple and undirected. For a graph G = (V, E),
we write V (G) to denote its vertex set and E(G) to denote its edge set. For a
vertex set S ⊆ V , we write G[S] to denote the graph induced by S in G, that
is, G[S] := (S, {e ∈ E | e ⊆ S}). For a set of graphs H we define V (H) :=
⋃

H∈H V (H) and E(H) :=
⋃

H∈H E(H). A triangle (K3) is the complete graph
on three vertices. We say that a graph H ′ is a copy of H if H ′ is isomorphic
to H . For a graph G and a graph H , we say that H ′ is a copy of H in G if H ′

is a subgraph of G and H ′ is a copy of H . Given two graphs H1 and H2, the
intersection of H1 and H2 is defined as V (H1) ∩ V (H2).

Given a graph G = (V, E), an edge subset M ⊆ E is called a matching if the
edges in M are pairwise disjoint. A matching M is maximal if there exists no
edge e ∈ (E \M) such that M ∪ {e} is a matching. A matching M is maximum
if there exists no larger matching. A vertex v ∈ V is matched if there exists an
edge in M that is incident to v. A vertex v ∈ V is unmatched if it is not matched.
An M -alternating path is a path in G, which starts with an unmatched vertex,
and then contains, alternately, edges from E \M and M . If an M -alternating
path ends with an unmatched vertex, then it is called M -augmenting path.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of problems [8,23]. One dimension of an instance of a
parameterized problem is the input size n, and the other is the parameter k. A pa-
rameterized problem is fixed-parameter tractable if it can be solved in f(k) · nO(1)

time, where f is a computable function depending only on the parameter k, not
on the input size n. Problem kernelization is a core tool to develop parameter-
ized algorithms [16,17,23]. A kernelization is often described with a set of data
reduction rules that are applied to the instance I with parameter k of a problem
and that change that instance into an smaller instance I ′ with parameter k′ ≤ k
in polynomial time, such that (I, k) is a yes-instance if and only if (I ′, k′) is a
yes-instance. An instance to which none of a given set of reduction rules applies
is called reduced with respect to the rules.

Next, we show the kernelization for Triangle Packing. After that, we
generalize this approach to H-Packing.

3 A Quadratic Kernel for Triangle Packing

Triangle Packing is formally defined as follows.

Triangle Packing

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Does G contain k vertex-disjoint copies of K3?
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The problem kernel with O(k3) vertices by Fellows et al. [9] starts with a greedy
packing P of triangles, which contains less than 3k vertices (otherwise, we already
have a packing of k triangles). Then, based on the size of P , the number of
vertices in V \V (P) is bounded, which implies that the total number of vertices
in the graph is bounded, yielding a problem kernel. In this sense, P is a witness
for the number of vertices in the graph. The problem with this approach is
that there is too much structure of the graph “outside” of P . To deal with this
problem, we use a different notion of witness, which contains more structure
than P , but which is still small enough in order to obtain a better bound on the
number of vertices. Our kernelization is based on the same reduction rules as the
kernel by Fellows et al. [9]. However, our approach applies them differently, and,
most importantly, it uses a different analysis. One of the main advantages of our
approach is that it is easier to generalize to H-Packing for arbitrary connected
graphs H .

Our approach works with the set of all triangles in G. Since in an n-vertex
graph there are at most

(

n

3

)

triangles, this set can be computed in polynomial
time. First, we apply the following simple data reduction rule, which is obviously
correct and can be performed in polynomial time.

Reduction Rule 1 Remove all vertices and edges that are not contained in any
triangle in G.

In the following, assume that G is reduced with respect to Reduction Rule 1. The
general strategy of our kernelization algorithm is as follows. First, we compute
in polynomial time a set of not necessarily disjoint triangles T , and we show
that if there are sufficiently many vertices in V (T ), then the input instance is a
yes-instance, and a corresponding size-k packing can be computed. If not, then,
with the size bound on V (T ), one can bound the size of V \ V (T ) by applying
a data reduction rule based on matching techniques. In this sense, the set T is
the basis of our kernelization and is the witness for the size of the kernel.

The witness T is defined as a maximal set of triangles in G that pairwise
intersect in at most one vertex. We will later show that I := V \ V (T ) forms an
independent set. The witness can be computed by an algorithm that starts with
an empty set T and greedily adds a triangle T to T if T intersects with each
triangle in T in at most one vertex. We call this algorithm compute witness.
After computing T , the following data reduction rule due to Fellows et al. [9] is
applied.

Reduction Rule 2 ([9]) If there is a vertex u ∈ V (T ) such that there exist
at least 3k − 2 triangles in T that pairwise intersect exactly in u, then delete u
from G and set k := k − 1.

Since T is a set of triangles that pairwise intersect in at most one vertex, the
precondition of Reduction Rule 2 can be verified in polynomial time. Intuitively,
this reduction rule is correct because a packing of k− 1 triangles in the reduced
graph can “hit” at most 3k − 3 triangles that pairwise intersect exactly in u
in the input graph, thus there is always at least one triangle left, which can be
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added to the packing, obtaining a packing of k triangles for the input graph.
If Reduction Rule 2 applies, then the kernelization algorithm restarts with ex-
haustively applying Reduction Rule 1 and calling compute witness. This is
repeated until Reduction Rule 2 does not apply or until k = 0. The latter means
that G is a yes-instance, thus the kernelization algorithm returns “yes”. In the
following, we can therefore assume that Reduction Rule 1 and Reduction Rule 2
do not apply and that k > 0.

Lemma 1. (1) The set I := V \ V (T ) forms an independent set in G and (2)
each triangle that contains a vertex in I shares an edge with a triangle in T .

Proof. (1) Suppose that I is not an independent set in G. Let e be an edge in G[I].
Due to Reduction Rule 1, the edge e must be contained in a triangle T 6∈ T ,
which intersects each triangle in T in at most one vertex, thus T is added to T
by compute witness, contradicting T 6∈ T . (2) If a triangle T 6∈ T contains a
vertex in I but shares no edge with a triangle in T , then again T intersects each
triangle in T in at most one vertex, contradicting T 6∈ T . ⊓⊔

Note that the graph G[V (T )] might contain edges that are not part of any
triangle in T ; however, by Lemma 1, these edges are not contained in any triangle
that contains a vertex in I. This fact is crucial to obtain a quadratic bound on
the number of vertices for our problem kernel. To this end, we need to bound
the number of vertices in V (T ) and the number of triangles in T .

Lemma 2. If |V (T )| > 18k2 or if |T | > 9k2, then G contains k vertex-disjoint
triangles.

Proof. Assume that there do not exist k vertex-disjoint triangles in T . Let P ⊆ T
be a maximum-size set of vertex-disjoint triangles. Thus, |P| ≤ k − 1, and for
each triangle T ∈ T \ P we know that V (T ) ∩ V (P) 6= ∅. By definition of
compute witness, the triangles in T pairwise intersect in a most one vertex.
For each triangle T ∈ P , due to Reduction Rule 2 each vertex in T is contained
in at most 3k− 3 triangles, thus for each vertex v ∈ V (T ) we have at most 6k−
6 + 1 ≤ 6k vertices contained in triangles that contain v. Thus, in total we have
at most 3|P| · 6k ≤ 18k2 vertices and at most 3|P| · 3k ≤ 9k2 triangles in T .
Therefore, if |V (T )| > 18k2 or |T | > 9k2, then G contains k vertex-disjoint
triangles. These can be found by a greedy algorithm that selects an arbitrary
triangle, deletes all other intersecting triangles, and proceeds recursively with
the remaining instance until it has found k triangles. ⊓⊔

Thus, our kernelization algorithm outputs “yes” if one of the conditions of
Lemma 2 applies. If this is not the case, then it remains to upper-bound the
size of I. To this end, we define an auxiliary bipartite graph GT as follows. The
vertex set consists of I as one partite set and J := {ve | e ∈ E(T )} as the other,
and GT contains an edge {u, ve} if {u} ∪ e induces a triangle in G. Note that
by part (2) of Lemma 1 every triangle containing a vertex in I is “represented”
by an edge in GT . See Figure 1 for an example. With the help of this auxiliary
graph, we can state a data reduction rule to upper-bound the size of I.
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Fig. 1: Left: Graph with witness T . The edge set E(T ) of the witness is drawn
bold. The dashed edge is not contained in any triangle that contains a vertex
in I nor in any triangle in the witness. Right: Corresponding auxiliary graph.
Note that degree-0 vertices (corresponding to unlabeled edges of G[V (T )]) are
not drawn. The bold edges are in a maximum matching. For the definition of
the vertex sets see the proof of Lemma 3.

Reduction Rule 3 Compute a maximum matching in GT . Remove all un-
matched vertices in I from G.

Lemma 3. Reduction Rule 3 is correct, that is, G has a size-k packing of tri-
angles if and only if the graph resulting by removing all unmatched vertices in I
from G has a size-k packing of triangles.

Proof. Let M be the computed maximum matching in GT and let I ′ be all
unmatched vertices in I (see Figure 1). Since M is maximum, the graph GT

contains no M -augmenting path. We have to show that G contains k vertex-
disjoint triangles if and only if G[V \ I ′] contains k vertex-disjoint triangles.

(⇐) This direction is trivial, since a set of k vertex-disjoint triangles in G[V \
I ′] is also contained in G.

(⇒) Let P be a set of k vertex-disjoint triangles in G. If no triangle in P
contains a vertex of I ′, then P is a set of k vertex-disjoint triangles in G[V \ I ′].
Therefore, suppose that there is a triangle in P that contains a vertex of I ′. We
show in the following that we can always modify P such that there is no triangle
containing a vertex of I ′.

Let I1 ⊆ I \ I ′ be the set of vertices in I \ I ′ to which there exists an M -
alternating path from some vertex in I ′ (see Figure 1). Each vertex u ∈ I1 is
an endpoint of an edge in M because there is an M -alternating path from some
vertex w ∈ I ′ to u, and the path begins with an edge that is not contained in M
(since all vertices in I ′ are unmatched). Let M ′ ⊆ M be the matching edges
that have an endpoint in I1, and let J1 := J ∩V (M ′) be the corresponding other
endpoints of M ′ (see Figure 1). We claim that every triangle that contains a
vertex in I ′ ∪ I1 contains an edge e corresponding to a vertex ve ∈ J1.

To show the claim, let T be a triangle in P that contains a vertex u ∈ I ′.
Suppose that T contains an edge e corresponding to a vertex ve in J \ J1.
Since ve 6∈ J1, we know that ve is not matched by M ; otherwise, there would
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be an M -alternating path (u, ve, w) for some vertex w ∈ I \ I ′, and this would
imply ve ∈ J1 by the definition of J1. Therefore, {u, ve} could be added to M ,
contradicting that M is maximum. Similarly, every triangle T in P that contains
a vertex u ∈ I1 contains an edge e corresponding to some ve ∈ J1. To see this,
assume again that ve ∈ J \ J1. Then, ve must be unmatched, but then the path
in GT consisting of the M -alternating path from some vertex w ∈ I ′ to u and the
edge {u, ve} forms an M -augmenting path, contradicting that M is maximum.
This shows the claim.

Since M ′ is a perfect matching between I1 and J1 (that is, every vertex
in I1 ∪ J1 is matched and every matching edge has one endpoint from I1 and
the other from J1), we can always replace all triangles in P that contain vertices
in I ′ ∪ I1 by the same number of triangles containing only vertices in I1. This
shows that G[V \ I ′] also contains k vertex-disjoint triangles. ⊓⊔

Lemma 4. After applying Reduction Rule 3, at most 27k2 vertices of I remain.

Proof. By Lemma 2, the witness T computed by compute witness contains
at most 9k2 triangles. Since J := {ve | e ∈ E(T )}, we know that |J | ≤ 27k2.
Due to Reduction Rule 3, all remaining vertices of I are matched by a maximum
matching between I and J in GT . Therefore, there remain at most 27k2 vertices
of I. ⊓⊔

Theorem 1. Triangle Packing has a problem kernel with at most 45k2 ver-
tices.

Proof. By Lemma 2, we have at most 18k2 vertices in V (T ) and, by Lemma 4,
there remain at most 27k2 vertices of I, thus in total we have at most 45k2

vertices. It is easy to verify that all the steps of the kernelization can be performed
in polynomial time. ⊓⊔

4 Kernelization for H-Packing

In this section, we generalize the kernelization approach for Triangle Packing

to H-Packing for an arbitrary connected graph H . The main difference to
Triangle Packing is a new reduction rule that bounds the size of the witness
and generalizes Reduction Rule 2. Let h denote the number of vertices in H .
Note that h is a constant. We start with a trivial reduction rule.

Reduction Rule 4 Remove all vertices and edges that are not contained in any
copy of H in G.

Lemma 5. Reduction Rule 4 is correct and can be performed in polynomial
time.

Proof. The correctness is trivial. By looking at the at most
(

n

h

)

many copies
of H in the input graph and marking all vertices and edges that are contained
in some copy, the vertices and edges not contained in any copy can be found in
polynomial time. ⊓⊔
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In the following, we assume that G is reduced with respect to Reduction Rule 4.
Let H be the set of all copies of H in G. Due to Reduction Rule 4, every vertex
in G is contained in at least one copy of H in H. The set H can be computed
in polynomial time by simply trying all

(

n

h

)

vertex subsets. As for Triangle

Packing, we define a witness. The witness definition for H-Packing is slightly
more complicated. A witness has to be defined with respect to a subset ofH, since
in the course of the witness computation some elements of H will be removed.

Definition 1. Let H be the set of all copies of H in G. A witness with respect
to a set H′ ⊆ H for H-Packing is a maximal subset W ⊆ H′ such that the
copies of H in W pairwise intersect in at most h− 2 vertices.

The algorithm compute witness, given in Figure 2, computes a witness W
with respect to H\R, whereR is a set of “unnecessary” copies of H inH, that is,
if there exists a size-k H-packing, then there is a size-k H-packing that does not
use any element of R. The identification of unnecessary copies of H is derived
from a combination of ideas for data reduction rules for Hitting Set [1] and
generalized matching and set cover problems [10]. The basic idea is that if there
are many copies of H inW that intersect in the same vertex subset S, then some
of them do not need to be considered for a maximum H-packing in G and can
therefore be removed from the graph. The algorithm uses an iterative approach,
which starts with empty sets R and W . In line 3 of Figure 2, it computes a
witness W with respect to H \ R. This can be done in polynomial time by an
iterative approach that adds an element H ′ from (H\R)\W toW if H ′ intersects
with each element in W in at most h − 2 vertices. In lines 5–11, the algorithm
identifies unnecessary copies and adds them to R; the correctness of this part
will be shown with Lemma 6. After having identified and removed unnecessary
copies of H from W , the set W might not be a witness with respect to H \ R;
therefore, the algorithm repeats until no more unnecessary copies of H can be
found. Then, the resulting setW is a witness with respect to H\R due to line 3.

Let W be the witness that is returned by compute witness(H). The fol-
lowing lemma shows that one can remove the copies of H in C′ in line 11 of
compute witness without changing the size of a maximum H-packing in G.
After executing compute witness, the set R contains all the removed copies
of H .

Lemma 6. If there exists an H-packing P of size k in G, then there exists
an H-packing P ′ of size k in G that does not contain any element of R.

Proof. If R∩P = ∅, then P ′ := P . Otherwise, we show that we can replace each
copy of H in R∩ P by another copy of H not contained in R.

We show the claim by induction on i (line 5 in Figure 2). Intuitively, i de-
termines the size of the set S computed in line 7; for i = 0, S contains h − 2
vertices, thus all copies of H whose vertex sets are supersets of S intersect ex-
actly in S due to Definition 1, and the number of these copies can be bounded
easily. For i > 0, the set S contains less than h− 2 vertices, and the copies of H
whose vertex sets are supersets of S might also intersect outside of S, but then
we can bound their number based on the induction hypothesis.
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Algorithm: compute witness (H)
Input: A set H of copies of H in G.
Output: A set R of unnecessary copies of H and a witness W with respect
to H \R.

1 R← ∅; W ← ∅
2 repeat
3 Greedily add elements from H \ (W ∪R) to W such that W is a witness.

4 C′ ← ∅
5 for i← 0 to h− 3 do
6 for each H ′ ∈ W do
7 for each S ( V (H ′), |S| = h− 2− i do
8 C ← {H ′′ ∈ W | V (H ′′) ) S}

9 if |C| >
∑i+1

t=0(h · (k − 1))t then

10 choose any set C′ ( C of size |C| −
∑i+1

t=0(h · (k− 1))t.

11 W ←W \ C′; R← R∪ C′

12 until C′ = ∅
13 return W , R

Fig. 2: Pseudo-code of the algorithm to compute the witness W .

Let i = 0 and let S be a size-(h−2) vertex subset such that |C| > 1+h·(k−1)
(line 9), and let C′ ⊆ C be as in line 10. Clearly, |C \ C′| = 1 + h · (k − 1).
Since the copies of H in C pairwise intersect (due to the construction of C in
line 8), at most one of them can be in P . Let H1 be that copy and assume
that H1 ∈ C′. The remaining k − 1 copies of H in P \ {H1} can intersect with
at most h · (k − 1) copies of H in C \ C′, since the copies of H in C pairwise
intersect exactly in S (because W is a maximal set of copies of H that pairwise
intersect in at most h− 2 vertices and |S| = h− 2). Therefore, there is at least
one H2 ∈ C \ C′ such that V (H2)∩ V (P) = V (H2)∩ V (H1) = S. We remove H1

from P and add H2 to it. As a consequence, P contains no copy of H from C′.
For i > 0, let S be a size-(h− 2 − i) vertex subset such that |C| >

∑i+1
t=0(h ·

(k − 1))t (line 9), and let C′ ⊆ C be as in line 10. Again, we may assume that
there exists an H1 ∈ P∩C′. We count the number of copies of H in C\C′ that can
intersect with P\{H1}. Let W := V (P\{H1}). Obviously, |W | ≤ h·(k−1). Each

vertex v ∈W can “hit” at most
∑i

t=0(h·(k−1))t copies of H in C\C′, since by the

induction hypothesis, there are at most
∑i

t=0(h·(k−1))t copies of H whose vertex

sets are supersets of S ∪ {v}. Therefore, at most h · (k − 1)
∑i

t=0(h · (k − 1))t =
∑i+1

t=1(h·(k−1))t copies of H in C\C′ intersect with P\{H1}, and thus there is at

least one left in order to replace H1 with (recall that |C \C′| =
∑i+1

t=0(h ·(k−1))t).
Thus, eventually we obtain a set P ′ of k vertex-disjoint copies of H such

that P ′ ∩R = ∅. ⊓⊔

Lemma 7. Algorithm compute witness runs in polynomial time.
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With the help of compute witness we can state the following reduction rule.

Reduction Rule 5 Run compute witness to get a witness W and the set R.
Then, replace G by G[V (H \R)].

Lemma 8. Reduction Rule 5 is correct, that is, G has a size-k H-packing if and
only if G[V (H \R)] has a size-k H-packing.

In the following, we assume that the graph G is reduced with respect to
Reduction Rule 4 and Reduction Rule 5, that H is the set of all copies of H
in G, and that W is a witness with respect to H.

Lemma 9. (1) The set I := V \ V (W) forms an independent set in G and (2)
each copy of H in H\W contains a vertex in I and h− 1 vertices of some copy
of H in W.

Proof. Similar to the proof of Lemma 1. (1) If G[I] contains an edge, which
has to be part of some copy of H due to Reduction Rule 4, then at most h− 2
vertices of that copy intersect with each H ∈ W , contradicting the fact that W
is maximal. (2) If a copy of H in H \ W shares at most h − 2 vertices with
each copy of H in W , then we again have a contradiction to the fact that W is
maximal. ⊓⊔

It follows directly from Lemma 9 that each copy of H contains at most one
vertex of I. Now, analogously to Triangle Packing, we bound the number of
vertices in V (W) and the number of copies of H in W .

Lemma 10. If |V (W)| > 2h(h · (k−1))h−1 or if |W| > 2(h · (k−1))h−1, then G
contains k vertex-disjoint copies of H.

Proof. We use the same proof strategy as in the proof of Lemma 2. Assume
that G does not contain a size-k H-packing. Let P be an H-packing of maximum
size. Since |P| ≤ k − 1, there are at most h · (k − 1) vertices in V (P). Each of

these vertices is contained in at most
∑h−2

t=0 (h ·(k−1))t ≤ 2(h ·(k−1))h−2 copies
of H (geometric series, with h ≥ 3 and k ≥ 2; recall that for h ≤ 2 H-Packing

is polynomial-time solvable and k = 1 implies P = ∅, and therefore the graph
cannot contain any triangle, thus |W| = 0), since for i = h − 3 each set S in
line 7 of compute witness (Figure 2) contains one vertex, and the number of
copies of H containing S directly follows from the condition in line 9. Hence,
|W| ≤ 2(h · (k − 1))h−1 and |V (W)| ≤ 2h(h · (k − 1))h−1. ⊓⊔

It remains to bound the size of I := V \ V (W). To this end, as for Triangle

Packing, we define a bipartite auxiliary graph GW as follows. The vertex set
consists of I as one partite set and a set J as the other, where J contains a
vertex vX for each set X ∈ {V (H) ∩ V (W) | H ∈ (H \W)} (that is, we have
a vertex for each possible intersection of the copies of H in H \ W with the
vertex set V (W)). For each H ∈ (H \ W) there is an edge between the vertex
in the set V (H) ∩ I and the vertex vX with X := V (H) ∩ V (W). Note that for
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each H ′ ∈ W there are at most h sets X ⊂ V (H ′) in {V (H) ∩ V (W) | H ∈
(H \ W)}, and therefore the size bound of W from Lemma 10 together with
Lemma 9 part (2) yields |J | < 2h(h · (k − 1))h−1. The size of the independent
set I then can be bounded exactly as for Triangle Packing with the follow-
ing reduction rule; the proof of correctness is almost the same as the proof of
Lemma 3 (replacing GT with GW and “triangle” with “copy of H”).

Reduction Rule 6 Compute a maximum matching in GW . Remove all un-
matched vertices in I from G.

The number of remaining vertices then can be bounded by the size of J , that is,
there are at most 2h(h · (k−1))h−1 vertices of I remaining. Together with the at
most 2h(h · (k− 1))h−1 vertices in V (W) (Lemma 10), we obtain the following.

Theorem 2. H-Packing has a problem kernel with O(k|H|−1) vertices.

Further Remarks. We believe that our approach also works for Set Packing.
However, this only gives a better kernel with respect to the number of elements,
not with respect to the number of sets and would therefore not improve the
known kernelization results [10]. One of the key ingredients for obtaining a kernel
with O(k|H|−1) vertices instead of O(k|H|) vertices is the matching technique to
bound the number of vertices in the remaining independent set. It would be
interesting to know whether it is possible to bound structures different from
independent sets by similar techniques. This way, a witness with less vertices
and edges could be possible, which could make a better kernel size possible.
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26. S. Thomassé. A quadratic kernel for feedback vertex set. In Proc. 20th SODA.

ACM/SIAM, 2009. To appear.
27. J. Wang and Q. Feng. Improved parameterized algorithms for weighted 3-set

packing. In Proc. 14th COCOON, volume 5092 of LNCS, pages 130–139. Springer,
2008.

28. J. Wang and Q. Feng. An O
∗(3.523k) parameterized algorithm for 3-set packing.

In Proc. 5th TAMC, volume 4978 of LNCS, pages 82–93. Springer, 2008.
29. J. Wang, D. Ning, Q. Feng, and J. Chen. An improved parameterized algorithm

for a generalized matching problem. In Proc. 5th TAMC, volume 4978 of LNCS,
pages 212–222. Springer, 2008.


	A Problem Kernelization for Graph Packing
	 Hannes Moser 

