A Problem Kernelization for Graph Packing

Hannes Moser

Friedrich-Schiller-Universität Jena, Germany Institut für Informatik

SOFSEM 2009

H-Packing

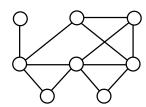
H-Packing Problem

Input: An undirected graph G = (V, E) and a parameter k.

Question: Exist at least *k* vertex-disjoint copies of *H* in *G*?

Example

$$H = \triangle$$



H-Packing

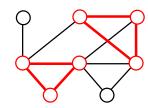
H-Packing Problem

Input: An undirected graph G = (V, E) and a parameter k.

Question: Exist at least *k* vertex-disjoint copies of *H* in *G*?

Example

$$H = \triangle$$



- ▶ Polynomial-time solvable if *H* is a graph with at most two vertices
- ► NP-complete if *H* is a connected graph with at least three vertices [Kirkpatrick & Hell, STOC 1978]

- ▶ Polynomial-time solvable if *H* is a graph with at most two vertices
- ▶ NP-complete if *H* is a connected graph with at least three vertices [Kirkpatrick & Hell, STOC 1978]
- ► Randomized algorithm with running time $2^{|V(H)|k} \cdot \text{poly}(n)$ [KOUTIS, ICALP 2008]
- ▶ Deterministic algorithm with running time 12.8 V(H)|k · poly(n) [KNEIS, MÖLLE, RICHTER, ROSSMANITH, WG 2006] [CHEN, LU, SZE, ZHANG, SODA 2007]

- ▶ Polynomial-time solvable if *H* is a graph with at most two vertices
- ▶ NP-complete if *H* is a connected graph with at least three vertices [Kirkpatrick & Hell, STOC 1978]
- ► Randomized algorithm with running time $2^{|V(H)|k} \cdot \text{poly}(n)$ [KOUTIS, ICALP 2008]
- ▶ Deterministic algorithm with running time 12.8 V(H)|k · poly(n) [Kneis, Mölle, Richter, Rossmanith, WG 2006] [Chen, Lu, Sze, Zhang, SODA 2007]
- ► *H* contains three vertices: deterministic algorithm with running time $3.52^{3k} \cdot \text{poly}(n)$ [Wang & Feng, TAMC 2008]
- ▶ H is a path on three vertices: deterministic algorithm with running time $2.48^{3k} \cdot \text{poly}(n)$ [Fernau & Raible, COCOA 2008]

Known Results (2)

If H is a triangle:

- ► Factor- $(3/2 + \epsilon)$ polynomial-time approximation [Hurkens & Schrijver, SIAM Journal on Discrete Mathematics, 1989]
- ► APX-hard in general graphs, factor-1.2 polynomial-time approximation on graphs with maximum degree four [Manic & Wakabayashi, Discrete Mathematics, 2008]
- NP-hard to approximate within ratio 139/138 [CHLEBÍK & CHLEBÍKOVÁ, CIAC 2003]

Fixed-Parameter Tractability

Definition

A problem is *fixed-parameter tractable* with respect to parameter k if it can be solved in $f(k) \cdot poly(n)$ time.

Fixed-Parameter Tractability

Definition

A problem is *fixed-parameter tractable* with respect to parameter k if it can be solved in $f(k) \cdot poly(n)$ time.

Problem Kernel

Parameterized problem L. Instance (I, k).

$$(I, k) \xrightarrow{\text{data reduction rules}} (I', k')$$

- \blacktriangleright $(I,k) \in L \leftrightarrow (I',k') \in L$
- k' < k
- $|I'| \leq g(k)$

Kernelization Results

- ► *H* is a triangle: $O(k^3)$ -vertex kernel [Fellows, Heggernes, Rosamond, Sloper, Telle, WG 2004]
- ► *H* is a path on three vertices: 7*k*-vertex kernel [Wang, Ning, Feng, Chen, TAMC 2008]
- ▶ H is a star with d leaves: $((d^3 + 4d^2 + 6d + 4) \cdot k)$ -vertex kernel [Fellows, Guo, Moser, Niedermeier, STACS 2009]

Introduction

Known Results

- ► *H* is a triangle: $O(k^3)$ -vertex kernel [Fellows, Heggernes, Rosamond, Sloper, Telle, WG 2004]
- ► *H* is a path on three vertices: 7*k*-vertex kernel [WANG, NING, FENG, CHEN, TAMC 2008]
- ▶ *H* is a star with *d* leaves: $((d^3 + 4d^2 + 6d + 4) \cdot k)$ -vertex kernel [Fellows, Guo, Moser, Niedermeier, STACS 2009]

Conjecture: K_t -PACKING might be a problem whose kernel cannot be smaller than $O(k^t)$ vertices.

[Fellows, Heggernes, Rosamond, Sloper, Telle, WG 2004]

Kernelization Results

Known Results

- ► *H* is a triangle: $O(k^3)$ -vertex kernel [Fellows, Heggernes, Rosamond, Sloper, Telle, WG 2004]
- ► *H* is a path on three vertices: 7*k*-vertex kernel [Wang, Ning, Feng, Chen, TAMC 2008]
- ▶ *H* is a star with *d* leaves: $((d^3 + 4d^2 + 6d + 4) \cdot k)$ -vertex kernel [Fellows, Guo, Moser, Niedermeier, STACS 2009]

Conjecture: K_t -PACKING might be a problem whose kernel cannot be smaller than $O(k^t)$ vertices.

[Fellows, Heggernes, Rosamond, Sloper, Telle, WG 2004]

New Result

▶ $O(k^{|V(H)|-1})$ -vertex kernel for H-PACKING

Our approach combines ideas for problem kernels for

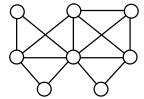
- ► SET PACKING and generalized matching problems [Fellows et al., Algorithmica, 2007], and
- ► HITTING SET
 [ABU-KHZAM, WADS 2007].

Data Reduction Rule

Remove all vertices and edges that are not contained in any triangle in G.

Witness Structure \mathcal{T}

A witness structure is a maximal set T of triangles in G that pairwise intersect in at most one vertex.

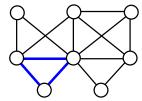


Data Reduction Rule

Remove all vertices and edges that are not contained in any triangle in G.

Witness Structure \mathcal{T}

A witness structure is a maximal set \mathcal{T} of triangles in G that pairwise intersect in at most one vertex.

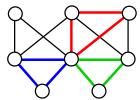


Data Reduction Rule

Remove all vertices and edges that are not contained in any triangle in G.

Witness Structure \mathcal{T}

A witness structure is a maximal set T of triangles in G that pairwise intersect in at most one vertex.



Bounding the Size of T

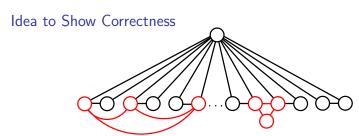
Data Reduction Rule

If there is a vertex that is contained in at least 3k-2 triangles in \mathcal{T} , then delete it from G and set k:=k-1.

Bounding the Size of T

Data Reduction Rule

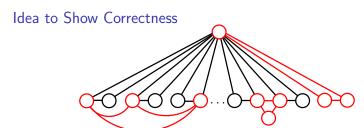
If there is a vertex that is contained in at least 3k - 2 triangles in \mathcal{T} , then delete it from G and set k := k - 1.



Bounding the Size of T

Data Reduction Rule

If there is a vertex that is contained in at least 3k-2 triangles in \mathcal{T} , then delete it from G and set k:=k-1.



Bounding the Size of \mathcal{T}

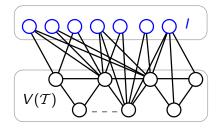
Lemma

The witness structure T contains $O(k^2)$ triangles.

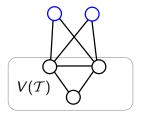
Proof

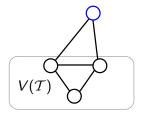
- ► Suppose that there is no packing of *k* triangles and let *P* be a maximum packing of triangles.
- ▶ P contains at most k-1 triangles.
- ▶ Each vertex of each triangle is contained in at most 3k 3 triangles of \mathcal{T} .
- ▶ There are at most $3 \cdot (k-1) \cdot (3k-3) = O(k^2)$ triangles in \mathcal{T} .

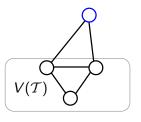
Structure

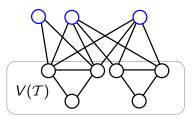


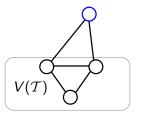
- ▶ $I := V \setminus V(T)$ forms an independent set.
- ► Each triangle that contains a vertex in / shares two vertices with a triangle in T.

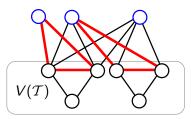


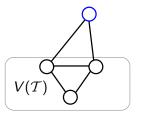


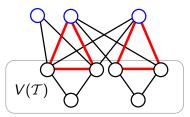


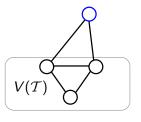


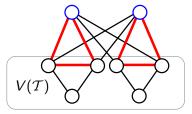




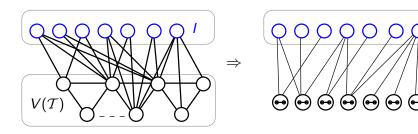






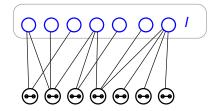


Auxiliary Graph



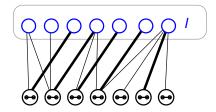
Data Reduction Rule

Compute a maximum matching in the auxiliary graph and remove all unmatched vertices in *I*.



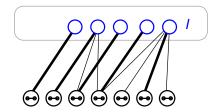
Data Reduction Rule

Compute a maximum matching in the auxiliary graph and remove all unmatched vertices in *I*.



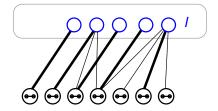
Data Reduction Rule

Compute a maximum matching in the auxiliary graph and remove all unmatched vertices in *I*.



Data Reduction Rule

Compute a maximum matching in the auxiliary graph and remove all unmatched vertices in *I*.



After removing the unmatched vertices, there are no more vertices in I than edges in triangles in \mathcal{T} .

 \Rightarrow There are $O(k^2)$ vertices in I.

Summary

- ▶ The witness structure contains $O(k^2)$ triangles.
- ▶ There are $O(k^2)$ vertices contained in these triangles.
- ▶ The number of remaining vertices is bounded by $O(k^2)$.
- ▶ All the steps can be performed in polynomial time.
- ▶ Thus, we obtain a $O(k^2)$ -vertex kernel.

Further Result and Open Questions

Further Result

▶ The approach can be generalized to *H*-Packing.

Open Questions

- ▶ Does TRIANGLE PACKING admit a size- $O(k^2)$ kernel?
- "Ultimate Goal": Does TRIANGLE PACKING admit an O(k)-vertex kernel?

Thank you!