
Feedback Arc Set in Bipartite Tournaments is

NP-Complete

Jiong Guo 1 Falk Hüffner 1 Hannes Moser 2

Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 2,
D-07743 Jena, Germany

Abstract

The Feedback Arc Set problem asks whether it is possible to delete at most k
arcs to make a directed graph acyclic. We show that Feedback Arc Set is NP-
complete for bipartite tournaments, that is, directed graphs that are orientations of
complete bipartite graphs.

Key words: combinatorial problems, computational complexity, feedback set
problems, bipartite tournaments

Given a directed graph G = (V, A) with vertex set V and arc set A, a feedback
vertex (or arc) set is a subset of vertices (or arcs) that meets all cycles in G.
The Feedback Vertex/Arc Set (FVS/FAS) problems ask to decide, for
a given graph G and a nonnegative integer k, whether there is a feedback
vertex/arc set of size at most k. Both problems are known to be NP-complete
if we put no restriction on the input directed graphs [3].

Motivated by the general hardness results, many subclasses of directed graphs
have been considered. It turns out that both FVS and FAS can be solved in
polynomial time in reducible flow graphs [10] and in cyclically reducible flow
graphs [12]. Due to important applications, e.g. in voting systems [7], feed-
back set problems restricted to tournaments received considerable attention.
A tournament is a directed graph where there is exactly one arc between each

Email addresses: guo@minet.uni-jena.de (Jiong Guo),
hueffner@minet.uni-jena.de (Falk Hüffner), moser@minet.uni-jena.de
(Hannes Moser).
1 Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.
2 Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative
compression for solving hard network problems), NI 369/5.

Preprint submitted to Elsevier 16 November 2006

pair of vertices. Speckenmeyer [11] showed the NP-completeness of FVS in
tournaments. FAS in tournaments was conjectured to be NP-hard for a long
time [4], and only recently was this proven. Ailon, Charikar, and Newman [1]
gave a randomized reduction from FAS on general directed graphs, which was
independently derandomized in two works [2,6]. Independently, Conitzer [7]
gave a deterministic reduction from MaxSAT.

FVS and FAS have also been studied for bipartite tournaments. A bipartite
tournament is an orientation of a complete bipartite graph. Cai, Deng, and
Zang [5] showed that FVS in bipartite tournaments is NP-complete. They
have also established a min-max theorem for FVS in bipartite tournaments.
Concerning FAS in bipartite tournaments, Gutin and Yeo [9] note that it is
fixed-parameter tractable, that is, the exponential part of the running time can
be restricted to the parameter k, the size of the feedback arc set. Dom et al. [8]
gave a concrete algorithm solving FAS in bipartite tournaments in O(3.38k ·
|V |O(1)) time. However, the complexity of FAS in bipartite tournaments was
left open.

We close this gap here by showing that FAS is indeed NP-complete in bipartite
tournaments. To this end, we give a polynomial-time many-one reduction from
the CNF Satisfiability (CNF-SAT) problem. Our reduction is inspired by
Conitzer’s proof of NP-completeness of FAS in tournaments [7]. However, the
observations used in his proof do not hold for bipartite tournaments, thus
requiring a fairly different reduction. Interestingly, Cai, Deng, and Zang [5]
also observe in their NP-completeness proof for FVS in bipartite tournaments
that it seems to be a formidable (if not impossible) task to directly adapt a
reduction for the non-bipartite case to the more complicated bipartite case.
Note that our reduction also shows that FAS is NP-complete for c-partite
tournaments for any fixed c ≥ 2.

A bipartite tournament is an orientation of a complete bipartite graph, mean-
ing its vertex set is the union of two disjoint sets V1 and V2 and there is exactly
one arc between each pair of a V1-vertex and a V2-vertex. The Feedback Arc
Set in bipartite tournaments (FASBT) problem is defined as follows:

Input: A bipartite tournament G and a nonnegative integer k.
Task: Find a feedback arc set S of at most k arcs whose removal from G
results in an acyclic digraph.

In the following, we use the equivalent characterization of FASBT as the prob-
lem of finding a sort ≺ of the vertices of a bipartite tournament such that there
are at most k backward arcs, that is, arcs u → v with v ≺ u. 3

3 Note that a directed graph is acyclic iff it has a topological sort, that is, a sort
without backward arcs.

2

wi
1 wi

2

ui
5ui

4ui
3ui

2

. . .

ui
1 ui

6

wi
3nm

Fig. 1. The gadget Xi for variable xi.

H1

u2
5. . .

.

u2
1

w1
3nmw1

1 w1
3nm−1

. . .
w2

3nmw2
1 w2

3nm−1

. . .

. . .u1
1 u1

5 u1
6 u2

6

X2X1

Fig. 2. Interconnection between two gadgets. For clarity, only a few vertices and
edges are shown. The arrows in the circles indicate the direction of all-pairwise
arcs.

Theorem 1 Feedback Arc Set in bipartite tournaments (FASBT) is
NP-complete.

PROOF. FASBT is clearly in NP. We prove the hardness by giving a re-
duction from CNF-SAT. Let F be a boolean formula in conjunctive nor-
mal form. Let C := {Ci : 1 ≤ i ≤ m} be the set of clauses in F , and
let X := {xi : 1 ≤ i ≤ n} be the set of variables in F .

We construct a bipartite tournament G = (V, A), whose vertex set consists
of four disjoint subsets, namely U -vertices, W -vertices, H-vertices, and clause
vertices. For each variable xi in F we use a variable gadget X i consisting of six
U -vertices U i := {ui

1, . . . , u
i
6} and 3nm W -vertices W i := {wi

j : 1 ≤ j ≤ 3nm}.
From each vertex in {ui

1, u
i
2, u

i
3, u

i
6} we draw an arc to each vertex in W i, and

from each vertex in W i we draw an arc to each of ui
4 and ui

5 (see Figure 1).

Then, we insert arcs between the variable gadgets. For every pair of vari-
ables xi, xj with i < j, we draw an arc from each vertex in U i to each vertex
in W j and draw an arc from each vertex in W i to each vertex in U j.

Furthermore, we insert n− 1 sets of H-vertices, H i := {hi
j : 1 ≤ j ≤ 3nm} for

each 1 ≤ i ≤ n − 1. These H-vertices are connected to the U -vertices of the
variable gadgets: For every j with 1 ≤ j ≤ i, we draw an arc from each vertex
in U j to each vertex in H i. For every j with i < j ≤ n, we draw an arc from
each vertex in H i to each vertex in U j (see Figure 2).

3

. . .
wj

1

. . .
wj

1

ci ci

Xj Xj

uj
6

x̄j ∈ Ci xj /∈ Ci ∧ x̄j /∈ Ci

ci

Xj

. . .
wj

1

uj
1

xj ∈ Ci

uj
1 uj

6 uj
1 uj

6

Fig. 3. The arcs between clause vertex ci and variable gadget Xj .

Finally, for each clause Ci, we insert a clause vertex ci and draw arcs between ci

and the U -vertices of each variable gadget as depicted in Figure 3.

The graph G = (V, A) is clearly a bipartite tournament with partitions V1 =⋃
1≤i≤n U i and V2 = (

⋃
1≤i≤n W i) ∪ (

⋃
1≤i≤n−1 H i) ∪ {c1, . . . , cm} and can be

constructed in polynomial time.

Next, we show that F is satisfiable iff there is a feedback arc set of size at
most 3nm − 2m for G, that is, we can find a sort of the vertices of G such
that there are at most 3nm− 2m backward arcs.

“⇒”: Given a subset A ⊆ V , we use r(A) to denote an arbitrary sort of the
vertices in A. First, we observe that G without any clause vertex is acyclic,
that is, there is a topological sort ≺ of the vertices in V \ {ci : 1 ≤ i ≤ m}:

s(X1) ≺ r(H1) ≺ s(X2) ≺ r(H2) ≺ · · · ≺ r(Hn−1) ≺ s(Xn),

where, for 1 ≤ i ≤ n,

s(X i) := r({ui
1, u

i
2, u

i
3, u

i
6}) ≺ r(W i) ≺ r({ui

4, u
i
5}).

Next, we show that if F is satisfiable, then we can extend ≺ to all vertices
in G (thus, including the clause vertices ci) such that we obtain a sort with at
most 3nm− 2m backward arcs.

Suppose that we are given a truth assignment T satisfying F . The value as-
signed to variable xi is denoted by T (xi). For each variable xi, we create a
set Pi to store the clauses that can be satisfied by T (xi). If a clause is satis-
fied by the assignments of at least two variables, then we add it only to one
of the corresponding lists. We use Qi to denote the set of the clause vertices
whose corresponding clauses are in Pi. If T (xi) is true, then we modify s(X i)
as follows:

s(X i) := r({ui
1, u

i
3}) ≺ r(Qi) ≺ r({ui

2, u
i
6}) ≺ r(W i) ≺ r({ui

4, u
i
5});

otherwise, that is, T (xi) is false, we modify s(X i) as follows:

s(X i) := r({ui
2, u

i
6}) ≺ r(Qi) ≺ r({ui

1, u
i
3}) ≺ r(W i) ≺ r({ui

4, u
i
5}).

4

We claim that the extended sort has 3nm− 2m backward arcs: Clearly, every
backward arc has a clause vertex as one of its endpoints. Since T satisfies F ,
for each clause Ci, there exists a j, 1 ≤ j ≤ n, with Ci ∈ Pj. Then, we can
count one backward arc between the vertices in U j and ci, namely, uj

5 → ci

if T (xj) is true or uj
4 → ci if T (xj) is false. For each variable gadget X l

with l 6= j, we count three backward arcs between the vertices in U l and ci.
Thus, there are 3(n− 1) + 1 backward arcs for each clause Ci, and thus there
are m · (3(n− 1) + 1) = 3nm− 2m backward arcs.

“⇐”: Let D be a feedback arc set for G of size at most 3nm− 2m. Let G′ be
the graph that results from G if we remove the feedback arc set D.

First, we claim that in G′, for any clause vertex ci, there is at most one variable
gadget that contains more than three neighbors 4 of ci. To show this, we
suppose for a contradiction that there are a clause vertex ci and two variable
gadgets Xj, Xk such that ci has more than three neighbors in each of Xj

and Xk. Assume that j < k. Note that in G, there are exactly three arcs
from ci to the U -vertices of a variable gadget and exactly three arcs from the
U -vertices of a variable gadget to ci. Since there are more than three neighbors
of ci in Xj, there exists in G′ an arc from ci to some U j-vertex. For the same
reason, there exists in G′ an arc from some Uk-vertex to ci. Since there are at
least 3nm directed paths from every U j-vertex to every Uk-vertex via vertices
in Hj and |D| ≤ 3nm − 2m, there is then a cycle in G′ (via a vertex in Hj),
which contradicts the acyclicity of G′.

With this claim, in G′, for each vertex ci there is at most one variable gadget in
which ci has more than three neighbors. Also, five neighbors are the maximum,
since six neighbors would imply a cycle (in Figure 3 we can observe cycles
through ci via the black and gray arcs). Therefore, there are at most 3(n −
1) + 5 = 3n + 2 arcs in G′ between a clause vertex ci and all variable gadgets,
thus in total G′ has at most 3nm+2m arcs between all clause vertices and all
variable gadgets. However, in G there are 6nm arcs between the clause vertices
and the variable gadgets. Thus, we have to remove at least 6nm−(3nm+2m) =
3nm− 2m arcs from G to destroy all cycles. Since |D| ≤ 3nm− 2m, we know
that |D| = 3nm−2m. This means that D contains only arcs incident to clause
vertices, and, for each clause vertex ci, there must be a variable gadget Xj in
which ci has exactly five neighbors in G′; we say that ci is linked to Xj.

Furthermore, let Cj and Ck denote two clauses in F such that variable xi

occurs positively in Cj and negatively in Ck. Observe that, in G′, at most
one of the clause vertices cj and ck can be linked to the variable gadget X i;
otherwise, G′ would contain a cycle (see Figure 4 for an illustration). Moreover,
a clause vertex ci cannot be linked to a variable gadget Xj whose corresponding

4 Two vertices are neighbors if they are adjacent in the underlying undirected graph.

5

cj

ui
1 ui

6

ck

X i

wi
l

.

Fig. 4. To link both cj and ck to Xi would mean to delete two arcs (there are 12
arcs in total and “to link” means to preserve exactly five arcs per clause). However,
there are three arc-disjoint cycles (dashed, dotted, and solid black arcs), thus we
would have to delete at least three arcs.

ci

Xj

uj
1 uj

6

.
wj

l

Fig. 5. There are two arc-disjoint cycles (dashed and dotted arcs), thus we could
only preserve four arcs, but not five. Note that the 3nm W -vertices in each variable
gadget are needed to assure that all cycles of this kind (from all clause vertices) are
arc-disjoint, that is, that we cannot destroy many such cycles by just deleting a few
arcs between the U -vertices and the W -vertices.

variable xj does not occur in clause Ci, as this would also mean that G′ contains
a cycle (see Figure 5).

Altogether, in G′ each clause vertex ci is linked to exactly one variable gad-
get Xj and the corresponding variable xj occurs in the corresponding clause Ci.
If more than one clause vertex is linked to a variable gadget X i, then vari-
able xi occurs in all of the corresponding clauses either positively or negatively,
but not both. Thus, we can compute the following truth assignment: If there
is a clause vertex ci linked to a variable gadget Xj, then we set the corre-
sponding variable xj to true, if xj occurs in Ci positively, and to false if xj

occurs in Ci negatively. Clearly, since all clause vertices ci are linked to vertex
gadgets, the computed truth assignment satisfies the formula F . 2

Acknowledgements We thank Rolf Niedermeier for giving valuable com-
ments and suggestions to improve the presentation of this paper.

6

References

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:
ranking and clustering. In Proc. 37th STOC, pages 684–693. ACM Press, 2005.

[2] N. Alon. Ranking tournaments. SIAM Journal on Discrete Mathematics,
20(1):137–142, 2006.

[3] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among
convex optimization problems. Journal of Computer and System Sciences,
21:136–153, 1980.

[4] J. Bang-Jensen and C. Thomassen. A polynomial algorithm for the 2-path
problem for semicomplete digraphs. SIAM Journal on Discrete Mathematics,
5(3):366–376, 1992.

[5] M.-C. Cai, X. Deng, and W. Zang. A min-max theorem on feedback vertex
sets. Mathematics of Operations Research, 27(2):361–371, 2002.

[6] P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem
is NP-hard for tournaments. Combinatorics, Probability and Computing, 2006.
To appear.

[7] V. Conitzer. Computing Slater rankings using similarities among candidates.
In Proc. 21st AAAI. AAAI Press, 2006.

[8] M. Dom, J. Guo, F. Hüffner, R. Niedermeier, and A. Truß. Fixed-parameter
tractability results for feedback set problems in tournaments. In Proc. 6th
CIAC, volume 3998 of LNCS, pages 320–331. Springer, 2006.

[9] G. Gutin and A. Yeo. Some parameterized problems on digraphs. Submitted
to a special issue of The Computer Journal on parameterized complexity, 2006.

[10] A. Shamir. A linear time algorithm for finding cutsets in reduced graphs. SIAM
Journal on Computing, 8(4):645–655, 1979.

[11] E. Speckenmeyer. On feedback problems in digraphs. In Proc. 15th WG, volume
411 of LNCS, pages 218–231. Springer, 1989.

[12] C.-C. Wang, E. L. Lloyd, and M. L. Soffa. Feedback vertex sets and cyclically
reducible graphs. Journal of the ACM, 32(2):296–313, 1985.

7

	References

