
Efficient Algorithms for Eulerian Extension

Frederic Dorn1, Hannes Moser2⋆, Rolf Niedermeier2, Mathias Weller2⋆⋆

1 Department of Informatics, University of Bergen, Norway.
frederic.dorn@ii.uib.no

2 Institut für Informatik, Friedrich-Schiller-Universität Jena, D-07743 Jena,
Germany. [hannes.moser,rolf.niedermeier,mathias.weller]@uni-jena.de

Abstract. Eulerian extension problems aim at making a given (directed)
(multi-)graph Eulerian by adding a minimum-cost set of edges (arcs).
These problems have natural applications in scheduling and routing and
are closely related to the Chinese Postman and Rural Postman prob-
lems. Our main result is to show that the NP-hard Weighted Multi-
graph Eulerian Extension is fixed-parameter tractable with respect
to the number k of extension edges (arcs). For an n-vertex multigraph,
the corresponding running time amounts to O(4k

· n3). This implies a
fixed-parameter tractability result for the “equivalent” Rural Postman
problem. In addition, we present several polynomial-time algorithms for
natural Eulerian extension problems.

1 Introduction

Edge modification problems in graphs have many applications and are well-
studied in algorithmic graph theory [4, 14]. The corresponding minimization
problems ask to modify as few (potential) edges as possible such that an input
graph is transformed into a graph with a desired property. Most studies in this
context relate to undirected graphs whereas we are aware of only few studies of
“arc modification” problems on directed graphs (digraphs). One example in this
direction is given by the NP-hard Transitivity Editing problem, asking to
make a digraph transitive by adding and deleting as few arcs as possible [18]. In
this work, as part of a larger project on Eulerian graph modification problems,
we study the problem of making a (directed) (multi-)graph Eulerian by edge
(arc) additions.1

A (directed) (multi-)graph is called Eulerian if it contains an oriented cycle
visiting every edge (arc) exactly once. An Eulerian extension is a set of edges
(arcs) to add to a (directed) (multi-)graph so that it becomes Eulerian.

Eulerian Extension (EE)
Input: A (directed) graph G = (V, E) and ωmax ∈ N.
Question: Is there an Eulerian extension E for G with |E| ≤ ωmax?

⋆ Supported by the DFG, project AREG (NI 369/9).
⋆⋆ Supported by the DFG, project DARE (NI 369/11).
1 Here, following previous work, we call this “extension” problem. In the graph mod-

ification context, this is also known as “completion” or “addition” problem.

Variants of EE include Weighted Eulerian Extension (WEE), where an
additional weight function ω : V ×V → N is given2 and the sum of the weights of
the arcs in the Eulerian extension we are looking for must not exceed ωmax, and
the multigraph variants (where parallel arcs are allowed as input and output)
Multigraph Eulerian Extension (MEE) and Weighted Multigraph
Eulerian Extension (WMEE), respectively. This work focuses on the lat-
ter problem, which has applications in scheduling [11]. Furthermore, the various
applications of Rural Postman [7] carry over to WMEE since both problems
are equivalent.

Related Problems and Previous Work. Lesniak and Oellermann [13] presented
an overview of undirected Eulerian graphs. The unweighted and undirected ex-
tension problems for graphs and multigraphs were already discussed by Boesch
et al. [3], who developed a linear time algorithm for the multigraph case and a
matching based algorithm for the graph case. Recently, Höhn et al. [11] initiated
a study of Eulerian extension problems applied to sequencing problems. To the
best of our knowledge, WEE has not been considered in the literature so far.

EE is closely related to the well-known Chinese Postman problem [6]
and the more general Rural Postman problem [7, 12]. More specifically, Ru-
ral Postman and WMEE are “equivalent” (see Section 2 for details). With
this equivalence, the NP-hardness of WMEE directly follows from the known
NP-hardness result for Rural Postman [12]. Moreover, the fact that Rural
Postman is solvable in polynomial time if the the set of required arcs is con-
nected [10] directly implies that WMEE is solvable in polynomial time if the
input is (weakly) connected.

Our Results. Our main achievement is to show that WMEE is fixed-parameter
tractable with respect to the parameter “number of extension arcs”3 denoted
by k. The running time is O(4k·n3), where n denotes the number of vertices in the
input multigraph and k denotes the number of additional arcs. Using the above-
mentioned equivalence, this implies a first fixed-parameter tractability result for
Rural Postman. In contrast to Rural Postman, whose unweighted variant
is NP-hard [12], we can show that EE and MEE are polynomial-time solvable.
Altogether, our work complements and extends known results for WMEE with
restricted weight function [11] and Rural Postman, for which mainly approx-
imation, heuristic, and some polynomial-time algorithms for special cases are
known [7, 10].

Due to the lack of space, several technical details are deferred to a full version
of the paper.

2 We assume the weight function to also assign weights to so far nonexistent arcs.
3 Replacing each weight by a shortest-path-weight, much like in the proof of Lemma 2,

decreases the number of arcs needed for an optimal Eulerian extension. It seems
possible to extend our results to the corresponding stronger parameter “number
of extension arcs after shortest-path-preprocessing”. Further considerations in the
direction are deferred to a full version of this paper.

2 Preliminaries and Basic Observations

The main focus of this work is on directed (multi-)graphs and, therefore, pre-
liminaries for undirected (multi-)graphs are omitted if they follow trivially from
the directed case. In the context of directed (multi-)graphs, connectivity al-
ways means weak connectivity, that is, connectivity of the underlying undirected
graph. Let G = (V, A) be a directed graph or multigraph (that is, a graph with
parallel arcs allowed—we also use the letter M to refer to multigraphs). The set
of connected components of G that are not isolated vertices is denoted by CG. In
this work we sometimes apply definitions for graphs to connected components or
sets of connected components. For example, we use V (G) to refer to the vertices
of the graph G and V (C) to refer to the vertices of the connected component C.
For a vertex set V ′ ⊆ V , let G[V ′] := (V ′, A ∩ (V ′ × V ′)) denote the directed
(multi-)graph that is induced by V ′. For an arc set E and some arc a, we abbre-
viate E ∪ {a} to E + a. If G is not a multigraph, then the complement G of G is
the digraph on the vertex set V that contains exactly the arcs that are not in A.
An Eulerian cycle in a directed (multi-)graph G is a (not necessarily simple)
directed cycle that visits all arcs of G exactly once. If such a cycle exists, then
we call G Eulerian. We call a (multi-)set E ⊆ V ×V an Eulerian extension for G
if (V, A∪ E) is Eulerian. Furthermore, E is called optimal if there is no Eulerian
extension of less total weight for G. A walk W in G is a sequence of arcs of A
such that each arc starts in the end vertex of the previous arc. Walks may also
be considered as multisets of arcs. For a vertex v of a directed (multi-)graph G,
the outdegree (indegree) of v, denoted by outdeg (v) (indeg (v)), is the number
of arcs in A that are outgoing of (incoming to) v. The balance of a vertex v is

bal(v) := indeg (v) − outdeg (v) .

Specifically, let I+
G (I−

G) denote the set of vertices v of G for which bal(v) > 0
(b(v) < 0), that is, indeg (v) > outdeg (v) (indeg (v) < outdeg (v)). In an undi-
rected graph, we define the balance bal(v) of a vertex v to be one if the number
of its neighbors is odd and zero otherwise. For both directed and undirected
(multi-)graphs G, vertices v of G with bal(v) = 0 are called balanced, while all
other vertices of G are called imbalanced, with IG denoting the set of imbalanced
vertices of G. With the concept of vertex balance, we can state a well-known
fact about Eulerian graphs and multigraphs.

Lemma 1 (Folklore). A (directed) (multi-)graph is Eulerian if and only if all
edges (arcs) are in the same connected component and all vertices are balanced.

Eulerian extension and Related Problems. In the most general problem that we
study, we have weights and allow the input and output to be multigraphs.

Weighted Multigraph Eulerian Extension (WMEE)
Input: A directed multigraph M = (V, A), a weight function ω : V ×V →
N, and positive integers k and ωmax.
Question: Is there an arc multiset E with |E| ≤ k and total weight at
most ωmax such that (V, A ∪ E) is an Eulerian multigraph?

Since multigraphs allow the presence of parallel arcs, we may also add arcs
that are already present in the input. If we restrict the problem to digraphs,
that is, we prohibit parallel arcs in both the input and the resulting digraph,
then we arrive at the Weighted Eulerian Extension problem (WEE). Both
WMEE and WEE are also considered in their unweighted versions, where all
arcs have weight one (and, hence, the extension set E may contain at most ωmax

arcs). Since being Eulerian is defined for both directed and undirected graphs,
all presented variants of Eulerian Extension also have an undirected version.

Eulerian extensions are closely related to arc routing. An important role in
this relation plays the following problem:

Rural Postman (RP)
Input: A digraph G = (V, A), a nonempty set R ⊆ A of “required” arcs,
a weight function ω : A → N, and integers q and ωmax ≥ 0.
Question: Is there a closed walk W in G such that W visits all arcs in R
and contains at most q + |R| arcs whose total weight is at most ωmax?

If R = A, then RP degenerates to the also well-known Chinese Postman
problem.

Parameterized Complexity. Our results are in the context of parameterized com-
plexity, which is a two-dimensional framework for studying computational com-
plexity [5, 9, 15]. One dimension is the input size n, and the other one is the pa-
rameter (usually a positive integer). A problem is called fixed-parameter tractable
(fpt) with respect to a parameter k if it can be solved in f(k)·nO(1) time, where f
is a computable function only depending on k. A parameterized problem P1 is
parameterized reducible to a parameterized problem P2 if P1 can be reduced
to P2 in “fpt-time” such that the new parameter exclusively depends on the old
parameter. If P1 is parameterized reducible to P2 and vice versa, then P1 and P2

are parameterized equivalent. If used as parameterized problems, all variants of
EE are parameterized by the number k of allowed arcs in a solution and RP
is parameterized by the number q of allowed additional arcs, that is, the num-
ber of arcs outside of R that are visited by the walk W . Note that for RP, q
is a “stronger” parameter than the number of arcs in W , because it is always
smaller. Since all solutions guarantee to contain R, choosing q can be considered
an above-guarantee parameterization of RP.

Helpful Observations. We present observations that help us prove our results
and give insights into the structure of the considered problems. First, observe
that, over all vertices of a graph, the balance always adds up nicely, that is, for
each “missing” incoming arc, there is also a “missing” outgoing arc.

Observation 1 Let G be a directed (multi-)graph. Then,
∑

v∈V (G) bal(v) = 0.

In undirected graphs and multigraphs we can observe that the sum over all
balances is even. Observation 1 can also be applied to connected components.
Next, we note the relation between RP and WMEE.

unweighted weighted, connected

undir. graph O(m
√

n) (Theorem 1) O(n3 log n) (Corollary 2)
undir. multigraph O(n + m) (Proposition 4) O(n3 log n) (Corollary 2)
dir. graph O(m2 + nm log n)) (Prop. 3) O(m2 + nm log n)) (Prop. 2)
dir. multigraph O(n + m) (Proposition 4) O(n3 log n) (Corollary 1)

Table 1: Polynomial-time solvable Eulerian extension problems. Here, n,m, and
m are defined as in Section 3. In general, weighted variants of Eulerian extension
problems are NP-hard if the input (multi-)graph is not connected [11, 12].

Proposition 1. RP is parameterized equivalent to WMEE.

This implies that the NP-hardness of RP for disconnected arc sets R carries
over to WMEE for disconnected inputs. The basic idea is to let R be the arc
set in the WMEE instance and identify an Eulerian extension with the set of
additional arcs in a walk that visits all arcs in R.

3 Polynomial-Time Cases of Eulerian Extension

In this section, we present polynomial-time algorithms for various variants of
Eulerian extension problems and their weighted versions. All running times are
given as functions in n (the number of vertices in the input), m (the number of
arcs (edges) in the input), and m (the number of arcs (edges) in the complement
of the input). We refer to Table 1 for an overview of the results of this section.
So far, the following result was known.

Theorem 1 ([3, 13]). Eulerian Extension on undirected graphs can be
solved in O(m

√
n) time.

In the following, we present polynomial-time algorithms for weighted variants of
Eulerian extension problems if the input (multi-)graph is connected. Then, we
consider the unweighted variant and allow disconnected (multi-)graphs.

Algorithms for Connected Weighted Variants. Keeping in mind that the discon-
nected versions of WEE and WMEE are NP-hard [11] (see also [12]), we provide
polynomial-time algorithms for both problems in case of connected inputs. Most
algorithms are based on computing flows or matchings. First, we present an al-
gorithm for digraphs, which is then modified to work for directed multigraphs
and undirected graphs as well.

Proposition 2. Weighted Eulerian Extension on connected digraphs can
be solved in O(m2 + nm log n)) time.

Proof. Consider an instance (G, ω, ωmax) for WEE, where G is a connected di-
graph, and a function b : V (G) → Z measuring the balance of each vertex (see
Section 2). Consider the flow network G with supply determined by b (negative

supply indicates demand), arc capacity one for each arc, and arc-costs deter-
mined by ω. It is easy to see that a flow of value 1

2

∑

v∈V | bal(v)| in this network
corresponds to an Eulerian extension for G and, thus, the minimum cost of such
a flow is also the minimum cost of an Eulerian extension for G. Such a flow can
be computed in O(m2 + nm log n)) time.4 ⊓⊔

Next, for a directed multigraph M let GM be the complete digraph (contain-
ing all possible arcs) on the vertex set of M . Analogously to the proof of
Proposition 2, we can use a min-cost flow algorithm on GM with arc capaci-
ties ∞ and weights according to ω to solve WEE on connected directed multi-
graphs M . The uncapacitated version of the min-cost flow algorithm (running
in O(n3 log n) time [2]) suffices in this case.

Corollary 1. Weighted Multigraph Eulerian Extension on connected
directed multigraphs can be solved in O(n3 log n) time.

To handle undirected multigraphs, we replace the min-cost flow in the auxiliary
graph GM with a min-cost perfect matching in the complete undirected graph
on the vertex set IM with the weight of each edge {u, v} equal to the weight of a
minimum weight path between u and v in M . These paths are computed by an
all-pairs shortest path algorithm. For each edge in the perfect matching, all edges
of the corresponding shortest path are added to the extension set. With some
effort we can show that the same algorithm can be used for WEE (assuming
connected inputs).

Corollary 2. Weighted (Multigraph) Eulerian Extension on connected
undirected graphs and multigraphs can be solved in O(n3 log n) time.

Algorithms for General Unweighted Variants. Since EE is a special case of
WEE, we can solve EE for connected digraphs using the algorithm from the
proof of Proposition 2 with a unit-weight version of the min-cost flow algorithm
running in O(m2) time.5

Corollary 3. Eulerian Extension on connected directed graphs can be solved
in O(m2) time.

This algorithm cannot handle multiple components. A more general algorithm
that also allows to solve the problem on disconnected digraphs (at the cost of
increased running time) will be presented in the full paper.

Proposition 3. Eulerian Extension on disconnected digraphs can be solved
in O(m2 + nm log n)) time.

This stands in contrast with RP being NP-hard for unweighted digraphs [12],
which seems to be due to the possibility to prohibit arcs by choosing the input

4 See Exercise 10.17 of [2], a solution to which can be found in [1].
5 Combine the solution found in [1] for Exercise 10.17 in [2] with breadth-first search

as shortest path algorithm, which is valid in case of unit weights.

digraph. In fact, the subsequent Proposition 4 implies that unweighted RP is
solvable in polynomial time if the input digraph is complete. More precisely, we
can solve MEE for directed inputs by a straightforward greedy strategy much
like the algorithm known for undirected multigraphs [3].

Proposition 4 (See [3]). Multigraph Eulerian Extension on directed
and undirected multigraphs can be solved in O(n + m) time.

4 Weighted Eulerian Extension on Directed Multigraphs

We prove that WMEE is fpt with respect to the size k of a solution by describ-
ing a dynamic programming algorithm to solve WMEE. More precisely, our
algorithm computes the solution with smallest total weight over all solutions of
size at most k. First, we modify the input, to obtain an equivalent but simpler
instance. This preprocessing is described in the first paragraph. Next, we trans-
form the preprocessed instance into an instance of a modified problem called
Black/Gray Weighted Multigraph Eulerian Extension (BGWMEE).
This problem has the advantage that a corresponding Eulerian extension has a
particularly simple structure to be exploited by a dynamic programming algo-
rithm. In the last paragraph, we present such an algorithm for BGWMEE.

Preprocessing the Input. We present two preprocessing algorithms that compute
an equivalent instance in which (a) the balance of each vertex v is in {−1, 0, 1},
and (b) there are no isolated vertices. To achieve (a), we repeatedly find a vertex v
with | bal(v)| > 1 and split v into two vertices: one vertex v′ with | bal(v′)| = 1
and one vertex v′′ with | bal(v′′)| < |b(v)|. To achieve (b), we replace the weight of
a direct connection between two vertices u and v with the weight of the cheapest
path of potential arcs from u to v that visits only isolated vertices.

Lemma 2. Let (M, ω, ωmax) be an instance of Weighted Multigraph Eu-
lerian Extension and let VI denote the set of isolated vertices in M . Then,
in O(n3) time, we can compute a weight function ω′ such that (M −VI , ω

′, ωmax)
is equivalent to (M, ω, ωmax).

Lemma 3. Let (M, ω, ωmax) be an instance of Weighted Multigraph Eu-
lerian Extension and let CM be the set of connected components of M . One
can modify (M, ω, ωmax) in O(k(n + m) + k2) time to obtain an equivalent in-
stance (M ′, ω′, ωmax) such that | bal(u)| ≤ 1 for each vertex u in M ′.

Lemma 2 and Lemma 3 imply a preprocessing algorithm that removes all isolated
vertices and assures | bal(v)| ≤ 1 for all vertices v in O(n3) time. In the following,
we assume all inputs to be preprocessed in this way.

Transformation To BGWMEE. The following observation helps to picture Eu-
lerian extensions as collections of paths between imbalanced vertices which is
fundamental for the algorithm. The observation is based on the fact that for
each balanced vertex u, each Eulerian extension contains as many arcs outgoing
of u as arcs incoming to u.

Observation 2 Let M be a directed multigraph and let E be an Eulerian exten-
sion of M . Then, E can be decomposed into a collection of paths that start at a
vertex in I+

M and end at a vertex in I−
M or start and end at a balanced vertex.

Observation 2 implies that an Eulerian extension E can be decomposed into
paths. Our idea to attack WMEE is to use dynamic programming to construct
such paths arc by arc. There are, however, a few obstacles to this approach.
Assuming that each path visits a component of the input multigraph at most
once, that is, no path contains two vertices of the same component, proved helpful
in overcoming these obstacles. Since this is not always the case, we modify the
input multigraph in order to use it in a slightly different (unfortunately more
technical) problem, for which this assumption is valid.

Black/Gray WMEE (BGWMEE)
Input: A directed multigraph M = (V, Ablack ∪ Agray) where each con-
nected component of (V, Ablack) has either no imbalanced vertex or ex-
actly two imbalanced vertices (one in I−

M and one in I+
M), a weight

function ω : V × V → N, and an integer ωmax ≥ 0.
Question: Is there an Eulerian extension E ′ of total weight at most ωmax

for M such that in each component Cblack of (V, Ablack) there is exactly
one start vertex of an arc in E ′ and exactly one end vertex of an arc in E ′

(that is, |(V (Cblack) × V) ∩ E ′| = 1 and |(V × V (Cblack)) ∩ E ′| = 1)?

Again, we can decompose a black/gray Eulerian extension into paths analogously
to Observation 2. The advantage of BGWMEE is that each black component is
visited exactly once by such a path. The gray arcs (arcs in Agray) are used
to model the connectivity constraints given by the original WMEE instance.
We first describe how WMEE can be solved using an algorithm for BGWMEE
and then present such an algorithm in the next paragraph. The main idea is to
transform an instance (M, ω, ωmax) of WMEE into an instance (M ′, ω′, ω′

max) of
BGWMEE by duplicating each component C of M as many times as it is visited
by paths of a solution for (M, ω, ωmax). To model that the copies of C originate
from one connected component of M , the copies of C are connected by adding
gray arcs. In the following, we describe the exact transformation algorithm.

First, find pairs of imbalanced vertices sharing a component. By Observa-
tion 1 and Lemma 3, there is a bijection m : I−

M → I+
M such that for all v ∈ I−

M ,
the vertices v and m(v) are in the same component. We use an arbitrary bi-
jection that respects this condition. Second, for a fix solution E of (M, ω, ωmax)
and all arcs (u, v) ∈ E , make a copy of the component of M that contains u.
In the following, we denote the number of copies of C by #(C). Since #(C)
depends on E , we do not know it in advance. Hence, we will try all possibilities.
However, not all functions # are feasible: The total number of copies cannot
exceed |E| (= k) and since each copy has at most two imbalanced vertices, each
component C must have at least |IC |/2 copies. Thus, we need only consider
functions of the form # : CM → N

+ with
∑

C∈CM
#(C) ≤ k and #(C) ≥ |IC |/2

for all C ∈ CM . It can be shown that there are at most 2k such functions. Third,
for each component C of M , assign a copy C′ of C to each pair (v, m(v)) of

u

vx

y

u′

v′x′

y′

u′′

v′′x′′

y′′

(a) (b)

Fig. 1: (a): A component C of a directed multigraph. With #(C) = 2, m(v) = u
and m(y) = x, the transformation trm

transforms (a) into (b). Here, white
vertices are balanced, black vertices are imbalanced. Note that, (v′, u′) is fixed
in the first copy and (y′′, x′′) is fixed in the second copy. Furthermore, u′ and u′′

are connected by gray arcs, according to the last step of the transformation.

imbalanced vertices of C and “fix” C′, that is, add an arc from the copy of m(u)
to the copy of u in C′ for all u ∈ I−

C − v. This assures that each copy of C
contains at most one pair of imbalanced vertices, and each pair of imbalanced
vertices (paired by m) is represented in one copy. All copies that have not been
assigned to an imbalanced pair are balanced completely in the above mentioned
way. Fourth, for each component C of M , its copies are pairwisely connected
by adding gray arcs. To this end, select a vertex v of each component of M
and add all possible arcs between all copies of v. Note that only copies of the
same component of M are connected by gray arcs. We denote the transformed
instance by (M ′, ω′, ωmax) := trm

#(M, ω, ωmax). See Figure 1 for an example of
the described transformation.

An Algorithm for BGWMEE. Having transformed an instance of WMEE to an
instance of BGWMEE using the algorithm presented in the previous paragraph,
we can now exploit the simple structure of BGWMEE in a dynamic program-
ming algorithm. The main idea in this algorithm is to construct an Eulerian
extension arc by arc while maintaining a set of connected components of the
input multigraph that have already been visited.

In the following, we describe a dynamic programming algorithm that solves
BGWMEE. Let (M, ω, ωmax) be an instance of BGWMEE and let Cblack

M be the
set of black connected components of M . For each subset S ⊆ Cblack

M and each
pair of vertices u, v ∈ V (S), our algorithm computes an entry ω(S, u, v) with

ω(S, u, v) =
minimum weight ω(E) of an arc set E such that E + (v, u)
is a black/gray Eulerian extension for M [V (S)].

(1)

If no black/gray Eulerian extension is possible with S, u, and v, then the en-
try ω(S, u, v) is assigned “∞”. The set S represents a subgraph of M and the
two vertices correspond to the endpoints of a (possibly “unfinished”) path of
an Eulerian extension (see Observation 2). The dynamic programming starts
with computing the entries for sets S that contain exactly one component and
augments S step by step, finally computing the entries for S = Cblack

M , which
are used to derive a minimum weight black/gray Eulerian extension for M with
respect to ω. In the following, we describe the update process for the entries.

For each C ∈ Cblack
M not containing imbalanced vertices and each u, v ∈ V (C),

set

ω({C}, u, v) :=

{

0, if u = v,

∞, otherwise.

This assignment is correct, that is, it satisfies (1) by setting E := ∅ (which has
obviously minimum weight) because adding an arc to a balanced component can
only keep the component balanced if the added arc is a loop. Thus E + (v, u)
is an Eulerian extension for M [V (C)]. Moreover, E + (v, u) is also a black/gray
Eulerian extension for M [V (C)] since the only connected component has exactly
one incoming arc as well as one outgoing arc in E (in this case, the incoming and
outgoing arc is (v, u)).

For each C ∈ Cblack
M containing two imbalanced vertices x ∈ I−

M and y ∈ I+
M ,

and each u, v ∈ V (C), set

ω({C}, u, v) :=

{

0, if u = x and v = y,

∞, otherwise.

This assignment satisfies (1) since, by definition of black/gray Eulerian exten-
sion, x and y are the only imbalanced vertices of C and both are balanced
adding (y, x) (that is, by using E = ∅). For the same reasons as above, E +(v, u)
is also a black/gray Eulerian extension for M [V (C)].

Next, we describe the computation of the entries for larger sets S. When
we compute the entry for a set S, we assume that all the entries for sets S′

with |S′| < |S| have already been computed. For a given S ⊆ Cblack
M with |S| > 1,

and vertices u, v ∈ V (S), the entry ω(S, u, v) is computed as follows. Let C ∈ S
denote the black component of M that contains v and let S′ := S \ {C}. If C is
balanced, then distinguish the following three subcases:

1. If u = v and there is a gray arc between C and S′, then set

ω(S, u, v) := min
u′,v′∈V (S′),u′ 6=v′

ω(S′, u′, v′) + ω(v′, u′).

2. If u ∈ V (S′), then set

ω(S, u, v) := min
w∈V (S′)

{ω(S′, u, w) + ω(w, v)}.

3. Otherwise, set ω(S, u, v) := ∞.

If C contains two imbalanced vertices x ∈ I−
M and y ∈ I+

M , then we distinguish
the following three subcases:

1. If u = x and v = y, and there is a gray arc between C and S′, then set

ω(S, u, v) := min
u′,v′∈V (S′),u′ 6=v′

ω(S′, u′, v′) + ω(v′, u′).

2. If u ∈ V (S′) and v = y, then set

ω(S, u, v) := min
w∈V (S′)

{ω(S′, u, w) + ω(w, x)}.

3. Otherwise, set ω(S, u, v) := ∞.

Finally, the weight ωopt of an optimal black/gray Eulerian extension for (M ′, ω)
is computed as follows:

ωopt := min
u,v∈V (Cblack

M
),u6=v

ω(Cblack
M , u, v) + ω(v, u)

This follows immediately from (1). A corresponding black/gray Eulerian exten-
sion can be computed by storing each solution E in addition to its weight in each
entry in the dynamic programming algorithm. Altogether, this algorithm takes
O(2k · n3) time for solving a given instance.

Lemma 4. Black/Gray Weighted Multigraph Eulerian Extension
can be solved in O(2k · n3) time.

The Complete Algorithm. The complete algorithm to solve WMEE runs in three
steps. First, the input multigraph M is preprocessed in O(n3) time such that it
does not contain isolated vertices or vertices with absolute balance more than
one (see Lemma 2 and Lemma 3). Second, a component-respecting bijection m :
I−

M → I+
M is chosen arbitrarily. Third, for all 2k possible functions # : CM → N

+,
the instance is transformed and the resulting instance of BGWMEE is solved
in O(2k · n3) time (see Lemma 4). The correctness of this algorithm follows
directly from the correctness of the transformation algorithm and Lemma 4.
The overall running time is O(4k · n3).

Theorem 2. Weighted Multigraph Eulerian Extension can be solved
in O(4k · n3) time.

Consequently, we can analogously solve Rural Postman parameterized by q
(see Proposition 1).

Corollary 4. Rural Postman can be solved in O(4q · n3) time.

5 Conclusion

We focused on Eulerian extension problems (and due to equivalence, the Rural
Postman problem), leaving yet unstudied other Eulerian graph modification
problems including the editing version. Eulerian extension problems alone still
offer a rich field of challenges for future research in terms of multivariate algorith-
mics [8, 16]. More specifically, we concentrated on the parameterized complexity
with respect to the parameter “number of extension arcs”, but there are many
natural structural parameters that make sense. For instance, it would be inter-
esting to determine the parameterized complexity with respect to the parameter

“number of weakly connected components” in a Weighted Multigraph Eu-
lerian Extension instance. In this context, Orloff [17] observed that “the
determining factor in the complexity of the problem seems to be the number
(c) of connected components in the required edge set”; Frederickson [10] noted
“the existence of an exact recursive algorithm that is exponential only in the
number of disconnected components.” However, it is doubtful that this meant
fixed-parameter tractability with respect to c. In further future work, we also
want to study the undirected and non-multigraph versions of WMEE. Here, we
conjecture that similar algorithmic approaches may allow for similar results.

References

[1] http://jorlin.scripts.mit.edu/Solution Manual.html.
[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, 1993.
[3] F. T. Boesch, C. Suffel, and R. Tindell. The spanning subgraphs of Eulerian

graphs. J. Graph Theory, 1(1):79–84, 1977.
[4] P. Burzyn, F. Bonomo, and G. Durán. NP-completeness results for edge modifi-

cation problems. Discrete Appl. Math., 154(13):1824–1844, 2006.
[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[6] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems part I: The

chinese postman problem. Oper. Res., 43(2):231–242, 1995.
[7] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems part II: The

rural postman problem. Oper. Res., 43(3):399–414, 1995.
[8] M. Fellows. Towards fully multivariate algorithmics: Some new results and direc-

tions in parameter ecology. In Proc. 20th IWOCA, volume 5874 of LNCS, pages
2–10. Springer, 2009.

[9] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[10] G. N. Frederickson. Approximation algorithms for some postman problems.

J. ACM, 26(3):538–554, 1979.
[11] W. Höhn, T. Jacobs, and N. Megow. On Eulerian extension problems and their

application to sequencing problems. Technical Report 008, Combinatorial Opti-
mization and Graph Algorithms, TU Berlin, 2009.

[12] J. K. Lenstra and A. H. G. R. Kan. On general routing problems. Networks,
6(3):273–280, 1976.

[13] L. Lesniak and O. R. Oellermann. An Eulerian exposition. J. Graph Theory,
10(3):277–297, 1986.

[14] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge
modification problems. Discrete Appl. Math., 113:109–128, 2001.

[15] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[16] R. Niedermeier. Reflections on multivariate algorithmics and problem parameter-
ization. In Proc. 27th STACS, volume 5 of LIPIcs, pages 17–32. IBFI Dagstuhl,
Germany, 2010.

[17] C. S. Orloff. On general routing problems: Comments. Networks, 6(3):281–284,
1976.

[18] M. Weller, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. On making directed
graphs transitive. In Proc. 11th WADS, volume 5664 of LNCS, pages 542–553.
Springer, 2009.

	Efficient Algorithms for Eulerian Extension
	Frederic Dorn, Hannes Moser, Rolf Niedermeier, Mathias Weller

