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Falk Hüffner† Christian Komusiewicz‡ Hannes Moser§

Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,

Ernst-Abbe-Platz 2, D-07743 Jena, Germany
{hueffner,ckomus,moser,niedermr}@minet.uni-jena.de

Abstract

We initiate the first systematic study of the NP-hard Cluster
Vertex Deletion (CVD) problem (unweighted and weighted) in
terms of fixed-parameter algorithmics. In the unweighted case, one
searches for a minimum number of vertex deletions to transform a
graph into a collection of disjoint cliques. The parameter is the number
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Brazil, volume 4957 in Lecture Notes in Computer Science, pages 711–722, Springer, 2008.

†Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4, and the Edmond J. Safra foundation.

‡Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.
§Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative com-

pression for solving hard network problems), NI 369/5, and project AREG (algorithms for
generating quasi-regular structures in graphs), NI 369/9.

1



To appear in Theory of Computing Systems, 2008

1 Introduction

Graph modification problems form a core topic in algorithmic graph the-
ory with many applications. In particular, cluster graph modification prob-
lems [36] have recently received considerable interest. Here, the basic prob-
lem is, given an undirected graph G, to find a minimum number of edit-
ing operations that transform G into a collection of disjoint complete sub-
graphs, a cluster graph. Each of these disjoint complete subgraphs is called
a cluster. Herein, the three standard editing operations are adding edges,
deleting edges, and deleting vertices. For instance, Cluster Editing asks
whether a graph can be transformed into a cluster graph by altogether
at most k edge additions and edge deletions. Cluster Editing is NP-
complete; it recently has shown particularly useful for clustering biologi-
cal data [10, 33]. Whereas also a factor-2.5 polynomial-time approximation
for Cluster Editing is known [3, 4, 38], in practical applications fixed-
parameter algorithms (combined with some heuristics) providing optimal so-
lutions seem to dominate [5, 6, 10, 33]. For a background on fixed-parameter
algorithmics we refer to [12, 15, 29]. Parameterized complexity studies for
Cluster Editing were initiated by Gramm et al. [21] and have been fur-
ther pursued in a series of papers [5, 6, 10, 13, 20, 22, 32, 33]. A previously
shown bound of O(1.92k +n3) for an n-vertex graph [20] can be improved by
combining a linear-time problem kernelization algorithm [13] that yields an
instance with O(k2) vertices with the currently best claimed running time
of O(1.82k +n3) [6] to get an algorithm with running time O(1.82k +n+m),
where m is the number of edges in the graph. Moreover, problem ker-
nels, based on efficient data reduction rules, with only O(k) vertices are
known [13, 22], the best upper bound currently being 4k [22].

Whereas Cluster Editing has been subject to intensive research, its
“sister problem” Cluster Vertex Deletion so far has been widely ne-
glected. Here, we aim at finding a vertex set of minimum weight such that
its deletion transforms a given graph into a cluster graph.1

1Parameterized problems (as follows) usually are formulated as decision problems—all
our algorithms will also solve the corresponding optimization problem within the same
time bounds.
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Weighted Cluster Vertex Deletion
Instance: An undirected graph G = (V, E), a vertex weight func-
tion ω : V → [1,∞), and a nonnegative number k.
Question: Is there a vertex set X ⊆ V with

∑

v∈X
ω(v) ≤ k such

that deleting all vertices in X from G results in a cluster graph (i. e.,
a graph where every connected component forms a complete graph)?

The unweighted version asks whether there exists a subset X ⊆ V such
that |X| ≤ k (in other words, all vertices have weight exactly one). We call
a set of vertices whose deletion produces a cluster graph a CVD set.

Motivation. Like Cluster Editing, Cluster Vertex Deletion may
find applications in graph-modeled data clustering: Assume that we have a
number of samples, some of which are equivalent (e. g., DNA samples, some
of which are from the same species) and a method to test two samples for
equivalence. A graph is formed where each vertex corresponds to a sample
and an edge between two vertices is added when their samples are tested as
equivalent. In the absence of errors, the resulting graph is a cluster graph,
where each connected component corresponds to an equivalence class (e. g.,
a species). However, an unknown subset of samples may be contaminated
and can produce unpredictable comparisons to other samples. An optimal
solution for unweighted Cluster Vertex Deletion, that is, a minimum-
cardinality set of vertices whose deletion produces a cluster graph, then pro-
vides the most parsimonious explanation for the data under this model. This
clearly extends to the weighted case.

Cluster Vertex Deletion can also be seen as the problem of making
a symmetric relation transitive by omitting a minimum number of elements.
The related problem of making an antisymmetric relation transitive by omit-
ting a minimum number of elements is also known as Feedback Vertex
Set in tournaments (see, e. g., [11, 34] for fixed-parameter tractability re-
sults).

A further application for Cluster Vertex Deletion is the computa-
tion of a maximum clique of a graph with the help of a CVD set. Suppose
a CVD set X has been computed. Clearly, a maximum clique is at least
as large as the largest cluster of the remaining cluster graph G[V \ X]. If
there is a clique that is even larger, then it must contain some vertices of X.
The vertex set S ⊆ X that is contained in the maximum clique must induce
a complete graph. For each such vertex set S, we can find the maximum
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clique that contains S and vertices of G by finding the cluster in G that
contains the most vertices that are neighbors of S. Therefore, we can find
a maximum clique of a graph by enumerating all subsets S of X, checking
whether the respective subset induces a complete graph, and then finding the
cluster in G[V \X] that contains the most vertices that are neighbors of all
vertices in S. A clique that has maximum size of all cliques thus found is a
maximum clique of G. A similar approach can be used to find the maximum
independent set of G. Therefore, the problem of finding a maximum clique
or a maximum independent set of a graph G can be parameterized by the
size of the CVD set of G, or by the size of the CVD set of the complement
graph Ḡ, respectively.

Finally, in comparison to Cluster Editing, a small parameter value k
(that is, the number of editing operations) appears even more likely for Clus-
ter Vertex Deletion, since the vertex deletion operation is more power-
ful, making a parameterized approach particularly meaningful here.

Known results. By general results for vertex deletion problems for hered-
itary graph properties [27], it follows that already unweighted Cluster
Vertex Deletion is NP-complete. The optimization version is MaxSNP-
hard [28]. Only few specific results for (unweighted) Cluster Vertex
Deletion are known.2 These are based on the simple observation that a
graph is a cluster graph if and only if it does not contain an induced P3,
a path on three vertices.3 Using this characterization, one directly obtains
fixed-parameter tractability [7] as well as a factor-3 polynomial-time approxi-
mation algorithm. Gramm et al. [20] used an elaborate case distinction found
with computer help to derive a search tree algorithm running in O(2.26km)
time for an m-edge graph. This can be improved to O(2.08k + n3), n de-
noting the number of vertices, by using a straightforward reduction of un-
weighted Cluster Vertex Deletion to the 3-Hitting Set problem
(transforming each induced P3 into a three-element set) and employing a
sophisticated algorithm for 3-Hitting Set [37]. Moreover, kernelization

2Jansen et al. [26] studied the closely related problem of finding d pairwise disjoint
cliques with maximum overall number of vertices, motivated by applications in scheduling.
Note that, other than in Cluster Vertex Deletion, they allowed to have edges between
cliques. Jansen et al. gave polynomial-time algorithms for special graph classes, contrasting
the NP-complete general case.

3In the remainder of this work, when writing of containment of a P3 in a graph we refer
to an induced P3.
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results for 3-Hitting Set [1] also imply an O(k2)-vertex problem kernel
for unweighted Cluster Vertex Deletion, which can be found in O(n3)
time. A weighted Cluster Vertex Deletion instance can be easily trans-
formed into a weighted 3-Hitting Set instance. With this transformation,
an O(k3)-vertex problem kernel result for weighted 3-Hitting Set [2] can
be adapted to weighted Cluster Vertex Deletion. Moreover, weighted
3-Hitting Set possesses an elaborate search tree algorithm based on case
distinction [14], implying an O(2.25k + n3) running time for weighted Clus-
ter Vertex Deletion.

Iterative compression, as first described by Reed et al. [35], is a technique
for the development of fixed-parameter algorithms. For an introduction and
a survey on state of the art results that employ iterative compression we refer
to Guo et al. [23]. Hüffner [24] gives experimental evaluations of some iter-
ative compression algorithms, demonstrating their usefulness on real-world
and synthetic data.

New results. One of our main results is an elegant iterative compression
algorithm for weighted Cluster Vertex Deletion using matching tech-
niques, running in O(2kk9 + nm) time.4 We extend our studies to the (also
NP-hard) case where the number of clusters to be generated is limited by a
second parameter d. Such studies have also been undertaken for Cluster
Editing [19, 22, 36], but note that for Cluster Editing clearly d ≤ 2k.
By way of contrast, since vertex deletion is a stronger operation than edge
deletion, in the case of Cluster Vertex Deletion also d > 2k is pos-
sible. Observe that d = 1 yields the Clique problem; therefore, a param-
eterization only with respect to the parameter d is meaningless. Consid-
ering the combined parameter (d, k), however, we can provide further fixed-
parameter tractability results. First, we nontrivially extend the kernelization
result for weighted Cluster Vertex Deletion to a problem kernel for
weighted d-Cluster Vertex Deletion, again achieving an O(k3)-vertex
problem kernel. Based on this, we develop three fixed-parameter algorithms
for weighted d-Cluster Vertex Deletion with the following running
times: O(2k · k9 + nm), O(1.40k · k3d + nm), and O(1.84k+d + nm). Depend-
ing on the value of d, each of these algorithms may be preferable in certain
constellations. In the latter two algorithms, fixed-parameter algorithms for

4A similar algorithm for Cluster Vertex Deletion later has also been described
by Fomin et al. [16].
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weighted Vertex Cover play a decisive role.

Notation. In this paper, for a graph G = (V, E) and a vertex set S ⊆ V ,
let G[S] be the subgraph of G induced by S and G \ S := G[V \ S], and
let N(v) := {u ∈ V | {u, v} ∈ E}. We write V (G) to denote the vertex set
of G.

2 Iterative compression for Cluster Vertex Dele-

tion

We now describe a novel iterative compression algorithm for weighted Clus-
ter Vertex Deletion. General considerations about iterative compres-
sion algorithms can be found in [23, 25] and [29, Chapter 11]. We first
describe how to employ a compression routine, and then the compression
routine itself.

The general idea behind our iterative compression is as follows. We start
with V ′ = ∅ and X = ∅; clearly, X is a CVD set for G[V ′]. Iterating over
all graph vertices, step by step we add one vertex v /∈ V ′ from V to both V ′

and X. Then X is still a CVD set for G[V ′], although possibly not a minimum
one. We can, however, obtain a minimum one by applying the compression
routine CompressCVD. It takes a graph G and a CVD set X for G, and
returns a minimum CVD set for G. Therefore, it is a loop invariant that X
is a minimum-size CVD set for G[V ′]. Since eventually V ′ = V , we obtain
an optimal solution for G once the algorithm returns X.

In the rest of this section, we describe the compression routine Com-
pressCVD following the pseudo-code in Figure 1. For this, consider a
smaller CVD set X ′ as a modification of the larger CVD set X. This mod-
ification retains some vertices Y ( X, while the other vertices S := X \ Y
are replaced by at most |S| − 1 new vertices from V \X. The idea is to try
by brute force all 2|X| − 1 partitions of X into such sets Y and S (line 2).
For each such partition, the vertices from Y are immediately deleted, since
we already decided to take them into the CVD set. In the resulting instance
G′ = (V ′, E ′) := G\Y , it remains to find an optimal CVD set that is disjoint
from S. This is a much easier task than finding a CVD set in general; in
fact, it can be done in polynomial time using data reduction and maximum
matching.
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CompressCVD(G, X)
1 X ′ ← X
2 for each ∅ 6= S ⊆ X:
3 if G[S] is a cluster graph:
4 G′ ← G \ (X \ S); R← V (G′ \ S)
5 G′ ←ReductionRule1(G′, S)
6 G′ ←ReductionRule2(G′, S)
7 G′ ←ReductionRule3(G′, S)
8 Classify each vertex u in R according to N(u) ∩ S
9 H ← auxiliary graph
10 M ← maximum weight matching in H
11 Delete all vertices not in a class corresponding to an edge in M
12 D ← vertices deleted in lines 4–7 and 11
13 if ω(D) < ω(X ′):
14 X ′ ← D
15 return X ′

Figure 1: Pseudo-code for CompressCVD, where ω(A) :=
∑

v∈A
ω(v)

for A ⊆ V .

First, we discard partitions where S does not induce a cluster graph
(line 3); these cannot lead to a solution, since we determined that none of
the vertices in S would be deleted. Further, R := V ′ \ S also induces a
cluster graph, since R = V \X and X is a CVD set. Therefore, the following
problem remains:

CVD Compression
Instance: An undirected graph G = (V, E), a vertex weight function
ω : V → [1,∞), and a vertex set S ⊆ V such that G[S] and G \ S
are cluster graphs.
Task: Find a vertex set X ′ ⊆ V \ S such that G \ X ′ is a cluster
graph and

∑

v∈X′ ω(x) is minimum.

An example instance is shown in Figure 2a. The instance can now be
simplified by a series of data reduction rules. The results are shown in Fig-
ures 2b–d.

Reduction Rule 1. Delete all vertices in R := V \ S that are adjacent to

more than one cluster in G[S].
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S

(a) CVD Compression instance

S

(b) After Reduction Rule 1

S

(c) After Reduction Rule 2

S

(d) After Reduction Rule 3

Figure 2: Data reduction in the compression routine.

Proof of correctness. If a vertex v ∈ R is adjacent to vertices u and w in
different clusters in S, then uvw induces a P3 that can only be removed by
deleting v (because the vertices in S cannot be deleted).

Reduction Rule 2. Delete all vertices in R that are adjacent to some, but

not all vertices of a cluster in G[S].

Proof of correctness. If a vertex v ∈ R is adjacent to a vertex u, but not to a
vertex w in a cluster in S, then uwv induces a P3, which can only be removed
by deleting v.

Reduction Rule 3. Remove connected components that are complete graphs.

Proof of correctness. No optimal solution deletes vertices in such compo-
nents.

After Reduction Rules 1–3 have been applied, the instance is much sim-
plified (Figure 2d). In each cluster in G[R], we can divide the vertices into
equivalence classes according to their neighborhood in S; each class then con-
tains either vertices adjacent to all vertices of a particular cluster in G[S], or
the vertices adjacent to no vertex in S (see Figure 3a). This classification is
useful because of the following lemma.
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S

(a) Classification

S

1

1

2

2

2
2

(b) The assignment problem

S

(c) Final resulting cluster graph

Figure 3: Assignment problem in the iterative compression, unweighted case.

Lemma 1. In an optimal CVD compression solution, for each cluster

in G[R], the vertices of at most one class are present.

Proof. Clearly, it is never useful to delete only some, but not all vertices of
a class, since if that led to an optimal solution, we could always re-add the
deleted vertices without introducing new P3’s. Further, if v ∈ R is adjacent
to some w ∈ S, and u is a vertex from the same cluster as v, but from a
different class, then uvw is a P3; therefore, we cannot keep vertices from two
different classes within a cluster.

Because of Lemma 1, the remaining task is an assignment of each clus-
ter in G[R] to one of its classes (corresponding to the preservation of this
class, and the deletion of all other classes within the cluster) or to nothing
(corresponding to the complete deletion of the cluster). However, we cannot
do this independently for each cluster; we must not choose two classes from
different clusters in G[R] which are adjacent to the same cluster in G[S],
since that would create a P3. This can be modelled as a weighted bipartite
matching problem in an auxiliary graph H , where each edge corresponds to
a possible choice. The graph H is constructed as follows (see Figure 3b):

• Add a vertex for every cluster in G[R] (white vertices).

• Add a vertex for every cluster in G[S] (black vertices in S).

9
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• For a cluster CS in G[S] and a cluster CR in G[R], add an edge between
the vertex for CS and the vertex for CR if there is a class in CR adjacent
to CS. This edge corresponds to choosing this class for CR and is
weighted with the total weight of the vertices in this class.

• Add a vertex for each class in a cluster CR that is not adjacent to a
cluster in G[S] (black vertices outside S), and connect it to the vertex
representing CR. Again, this edge corresponds to choosing this class
for CR and is weighted with the total weight of the vertices in this class.

Since we only added edges between a black and a white vertex, H is bipartite.
The task is now to find a maximum-weight bipartite matching, that is, a set of
edges of maximum weight where no two edges have an endpoint in common.
This allows any choice for a cluster, as long as no two clusters share edges
to the same cluster in G[S]. The following lemma shows that this is a valid
approach:

Lemma 2. A maximum-weight bipartite matching in H provides an optimal

CVD compression solution.

Proof. Each edge in a matching corresponds to a class in a cluster of G[R].
The CVD compression solution is to delete all vertices in R but those of
the selected classes. The matching cannot select two classes within the same
cluster, since the corresponding edges have an endpoint in common; simi-
larly, it cannot select two classes that share a connection to the same cluster
in G[S]. Therefore, a matching yields a feasible solution. By Lemma 1, an
optimal CVD compression solution corresponds to an assignment of each
cluster to one of its classes or to nothing, and therefore, it corresponds to
a matching. Finally, the weight of a matching corresponds to the weight of
the vertices not deleted from R, and therefore a maximum-weight matching
corresponds to an optimal CVD compression solution.

Figure 3c shows the resulting cluster graph for our example after deleting
the vertex sets corresponding to edges that are not selected by the maximum-
weight matching shown in Figure 3b by bold edges. Note that the size of the
solution can be upper-bounded by k+1, since ∀v ∈ V : ω(v) ≥ 1. Altogether,
we obtain

Proposition 1. Weighted Cluster Vertex Deletion can be solved in O(2k·
n2(m + n log n)) time.
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Proof. The correctness of the algorithm has already been shown. It remains
to bound the running time. We can find clusters in S and R in O(m) time
by depth-first search within G[S] and G[R]. Reduction Rule 1 can then be
executed in O(m) time. If Reduction Rule 1 has been applied, Reduction
Rule 2 can be executed in O(m) time by examining the degree of each vertex
in R. Reduction Rule 3 can be executed in O(m) time. Finally, we need to
find a maximum weight matching in a bipartite graph with at most n ver-
tices and at most m edges, which can be done in O(n(m+n logn)) time [17].
Therefore, we can solve CVD Compression in the same time. The num-
ber of vertices in an intermediary solution X to be compressed is bounded
by k + 1, because any such X consists of an optimal solution for a subgraph
of G plus a single vertex. In one compression step, CVD Compression is
thus solved O(2k) times, and there are n compression steps, yielding a total
of O(2k · n2(m + n log n)) time.

For the unweighted case, we can get better running times, since integer
weighted matchings can be found faster than general weighted ones.

Theorem 1. Unweighted Cluster Vertex Deletion can be solved in O(2k·
km
√

n log n) time.

Proof. For each matching instance, we can use an algorithm for integer
weighted matching with a maximum weight of C = n [18], yielding a running
time of O(m

√
n log(nC)) = O(m

√
n log n). Further, in iterative compression,

we can save some iteration rounds by starting with a large subgraph for which
we can still find in polynomial time a solution of size at most k. For Clus-
ter Vertex Deletion, we can find a solution of size at most 3k by simply
repeatedly finding a P3 and then taking all three of its vertices. We can then
start the iteration with G lacking these at most 3k vertices and an empty
CVD set, after which we will need only 3k iteration rounds.

Using problem kernelization, we can reach an additive running time of the
form O(f(k) + poly(n)). First, we improve the running time bound on the
enumeration of P3’s, compared to the trivial running time bound of O(n3).

Proposition 2. All P3’s of a graph can be enumerated in O(nm) time.

Proof. We can enumerate the P3’s by enumerating for each vertex v ∈ V
the P3’s in which v has degree two. This is done by scanning through v’s
adjacency list. For each vertex u in the adjacency list, we check for all
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vertices w that appear after u in the adjacency list of v whether u and w
are adjacent. If this is not the case, then we have found a P3 uvw and
output it. The running time of this approach can be bounded as follows:
for each vertex v, we spend O(deg(v) · deg(v)) time, since we scan through
its adjacency list, and for each position in the adjacency list, we scan once
again through the part of the list after this position. Testing adjacency can
be performed in constant time via an adjacency matrix. Therefore, the total
running time can be bounded as O(

∑

v∈V
deg(v) ·deg(v)) = O(

∑

v∈V
deg(v) ·

n) = O(nm).

Applying this algorithm for enumeration of P3’s together with a kernel-
ization for 3-Hitting-Set [1] leads to the following running time.

Theorem 2. Unweighted Cluster Vertex Deletion can be solved in O(2k·
k6 log k + nm) time.

Proof. In O(nm) time, we enumerate the P3’s of G. We then apply the linear-
time kernelization by Abu-Khzam and Fernau [2], which gives us an instance
with O(k3) vertices. To this instance, we apply the kernelization algorithm
that yields a kernel with O(k2) vertices (running in O(k9) time) [1]. Finally,
we apply Theorem 1.

Curiously, we can use this unweighted algorithm as a subroutine to speed
up the weighted case: if we have a solution for an unweighted instance, we
can get an optimal weighted solution by executing the compression routine
once. This works because the compression only requires that the set X to
compress is a CVD set, and does not make any assumptions about its weight.

Theorem 3. Weighted Cluster Vertex Deletion can be solved in O(2k ·
k9 + nm) time.

Proof. Using the kernelization by Abu-Khzam and Fernau [2], we can in O(nm)
time first shrink the instance to O(k3) vertices. Then we can use the algo-
rithm for the unweighted problem for all compression steps except the last
one. For a kernel of size k3, this takes O(2k ·k9 +nm) time using Theorem 1.
A single compression for the weighted problem takes O(2k · n(m + n log n))
time, giving a time of O(2k(k9 + k6 log k)) = O(2kk9) for the kernelized in-
stance. In total, we arrive at the claimed bound.
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In fact, we even have a stronger parameterization in Theorem 3 when
compared to Proposition 1: as parameter k, we can use the number of vertices
in an optimal unweighted solution, which is less than or equal to the number
of vertices in an optimal weighted solution, which in turn is less than or equal
to the minimum weight of a weighted solution.

Since the matching subproblem is the bottleneck of the algorithm, it
would be nice to replace it with something simpler. However, it is straightfor-
ward to show that the assignment problem in the last step of the compression
routine is as hard as the task of finding a maximum weight matching in a bi-
partite graph, even after applying Reduction Rules 1–3. This indicates that
the bottleneck of computing the maximum weight matching might actually
be very difficult to overcome with our approach.

3 Cluster Vertex Deletion with a limited num-

ber of clusters

In clustering applications, it is often desirable to limit the number of output
clusters, for example to simplify manual verification of the solution. The
deletion of vertices should then produce a d-cluster graph, that is, a graph
comprising at most d clusters.

Weighted d-Cluster Vertex Deletion
Instance: An undirected graph G = (V, E), a vertex weight func-
tion ω : V → [1,∞), and a nonnegative number k.
Question: Is there a vertex set X ⊆ V with

∑

v∈X
ω(v) ≤ k such

that deleting all vertices in X from G results in a d-cluster graph?

Since the property of being a d-cluster graph is hereditary, it follows that
d-Cluster Vertex Deletion is NP-complete [27].

We can show that slightly modifying the kernelization approach from Sec-
tion 1 that makes use of a result for 3-Hitting Set [2] leads to a problem
kernel.

Theorem 4. Weighted d-Cluster Vertex Deletion admits a problem

kernel containing O(k3) vertices, and it can be found in O(nm) time.

Proof. Since every vertex weight in a weighted d-Cluster Vertex Dele-
tion instance is at least 1, any solution set has size at most k. Therefore,
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we can use the kernelization algorithm for 3-Hitting Set by Abu-Khzam
and Fernau [2] that produces a kernel that contains O(k3) elements. This
kernelization algorithm removes elements for two reasons. First, it removes
all elements from the weighted 3-Hitting Set instance that appear in too
many subsets, because they must belong to any 3-hitting set. Hence, these
elements are added to the solution. Second, it removes elements that do not
appear in any subset, because they must not belong to any minimal 3-hitting
set. For details, we refer to [2].

Next, we describe our kernelization algorithm and bound the kernel size
and the running time of the procedure.

Let G be the graph of the weighted d-Cluster Vertex Deletion
instance. First, we enumerate the P3’s of G in O(nm) time (see Proposition 2)
and create a 3-Hitting-Set instance in which every P3 corresponds to a
subset of size 3. Since the minimum vertex weight is 1, the solution has size
at most k.

Then, we perform all reduction rules of Abu-Khzam and Fernau [2] ex-
cept the deletion of elements that do not appear in any subset. Let S be
the set of elements after we have performed these reduction rules. Clearly, S
contains O(k3) elements that appear in subsets and an unbounded number of
elements that do not appear in any subset. We then transform the weighted
3-Hitting Set instance back into a weighted d-Cluster Vertex Dele-
tion instance by creating the graph G[S]. This graph has O(k3) vertices
that appear in induced P3’s and an unbounded number of vertices that do
not appear in P3’s. The vertices that do not appear in any induced P3 are
part of isolated clusters. In Cluster Vertex Deletion, we can remove
all of these vertices from the graph since adding these vertices to a CVD set
is never optimal. However, in weighted d-Cluster Vertex Deletion, we
might have to add some of these vertices to the d-CVD set in order to delete
surplus clusters. We now describe how we can remove some of the isolated
clusters from the graph without removing any clusters that we might have
to add to the d-CVD set.

Clearly, we either have to delete all vertices of a cluster or none: a d-
CVD set that deletes some but not all vertices of a cluster is non-optimal
since we could reinsert these deleted vertices into the graph without increas-
ing the number of clusters and obtain a better solution. Furthermore, we
cannot delete any clusters in which the sum of the vertex weights is more
than k. Hence, we can remove each of these clusters from the graph, de-
creasing d by 1, because any such cluster is already fixed as one cluster of
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the final d-cluster graph. All remaining clusters contain at most k vertices.
Clearly, we can delete at most k clusters. Therefore, we only have to keep
the k clusters that have the lowest weight. All others can be removed with-
out decreasing k, decreasing d by 1 for each removed isolated cluster. The
remaining graph then contains at most k isolated clusters with at most k
vertices each, resulting in O(k2) vertices that are part of isolated clusters.
Together with the O(k3) vertices that are not part of isolated clusters, the
graph then has O(k3) vertices overall. Clearly, all steps can be performed
in O(nm) time.

The kernelization result implies that d-Cluster Vertex Deletion is
fixed-parameter tractable with respect to the parameter k. A straightforward
approach to solve d-Cluster Vertex Deletion is to apply a search tree
algorithm that branches on the different cases to destroy a P3 by vertex
deletion, deleting a different vertex in each branch. Since the minimum
vertex weight is 1, the parameter is reduced by at least 1 in each search
tree branch. Let k′ be the sum of the weights of the vertices that may still
be deleted at a given search tree node. Branching is performed as long as
the graph contains a P3 and k′ ≥ 1. If k′ < 1, and the graph still contains
a P3, then we have not found a d-CVD set of weight at most k and we
cannot delete further vertices. If otherwise the graph is P3-free, then it is a
cluster graph albeit one that might contain more than d clusters. Therefore,
we delete the cluster of minimum weight until either G is a d-cluster graph,
which means that we have found a solution, or k′ < 1, which means that no
solution was found in this search tree branch.

Clearly, this search tree procedure finds a d-CVD set of minimum weight,
since it explores all possibilities to destroy the P3’s of the graph and after-
wards optimally removes surplus clusters. A straightforward combination
of search tree, kernelization and the interleaving technique [30] leads to the
following running time.

Proposition 3. Weighted d-Cluster Vertex Deletion can be solved in

running time O(3k + nm).

In the remainder of this section, we describe three different algorithms
that improve on this trivial search tree algorithm. The first algorithm is a
modification of the iterative compression algorithm from Section 2 and also
uses the parameter k. The second and third algorithm use the combined
parameter (d, k) but are preferable if d is small compared to k.
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3.1 An iterative compression algorithm for d-Cluster
Vertex Deletion

In the following, we describe how to modify the algorithm from Section 2 in
order to ensure that the graph remaining after the removal of the CVD set
comprises at most d clusters. The only part of the algorithm that has to be
modified is the compression routine. The problem that has to be solved by
this compression routine can be formulated as follows:

d-CVD Compression
Instance: An undirected graph G = (V, E), a vertex weight function
ω : V → [1,∞), and a vertex set S ⊆ V such that G[S] and G \ S
are d-cluster graphs.
Task: Find a vertex set X ′ ⊆ V \ S such that G \X ′ is a d-cluster
graph and

∑

v∈X′ ω(x) is minimum.

The main outline of the procedure remains the same, that is, we first perform
data reduction, and subsequently solve the remaining problem with a match-
ing algorithm. Recall that R := V \ S denotes the set of vertices that may
still be deleted in order to obtain a d-cluster graph. We can apply Reduction
Rules 1 and 2 of the original algorithm, since in these reduction rules we
only delete vertices that appear in a P3 together with two vertices of S, and
hence have to be deleted in order to destroy this P3. In contrast, we cannot
apply Reduction Rule 3, since this reduction rule removes isolated clusters
from the graph. However, we might have to delete some of these clusters in
order to obtain a graph comprising at most d clusters.

After performing Reduction Rules 1 and 2, we divide the vertices of each
cluster in G[R] into equivalence classes according to their neighborhood in S
in the same way as it was done in the algorithm from Section 2. This situa-
tion is depicted in Figure 4a. From these equivalence classes and the clusters
in G[S], we create an auxiliary graph H , in which each vertex represents an
equivalence class, the difference being that now this graph contains isolated
vertices, representing the isolated clusters that were not removed. An ex-
ample of this graph is shown in Figure 4b. We partition the vertices of H
as follows: the set S in H contains the vertices that correspond to clusters
in G[S], the vertices in T correspond to sets of vertices in G that are adjacent
to vertices in S, the vertices in U correspond to sets of vertices in G that
are not adjacent to vertices in S, and the vertices in I correspond to isolated
clusters in G. Not deleting a set of vertices that corresponds to a vertex in U
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S

(a) A graph after ap-
plication of Reduction
Rules 1 and 2.

S

T

U

I

11

2
22

(b) The initial auxil-
iary graph H .

S

T

U

I

1

1

11

2
22

11

11

(c) The modified aux-
iliary graph H .

Figure 4: Example of the compression procedure for 3-Cluster Vertex
Deletion.

means that we create an additional cluster. Clearly, if |S| + |U | + |I| ≤ d,
then we always obtain a d-cluster graph, and hence we can remove the iso-
lated vertices from this auxiliary graph H and solve the matching problem
as in Section 2. Otherwise, we transform H in order to obtain a graph whose
maximum weight matching provides a minimum weight d-CVD set.

Since we cannot delete any vertices from S, we can create at most d′ :=
d− |S| additional clusters. First, we apply a data reduction rule:

Reduction Rule 4. If d′ > |U |, then remove the vertex corresponding to

the isolated cluster of maximum weight from I and set d′ := d′ − 1.

Proof of correctness. Even if all clusters corresponding to vertices from U
are not deleted, there is at least one isolated cluster that we do not need
to delete, and it is optimal to not delete the isolated cluster of maximum
weight.

After this reduction rule has been exhaustively applied, we can assume
that d′ ≤ |U |. We now modify the auxiliary graph H as follows:

• Connect each vertex in I with each vertex in U . To each new edge,
assign a weight that equals the weight of the cluster that corresponds
to the vertex in I.

• Add |U | − d′ additional vertices to H . Let I ′ be the set of these ad-
ditional vertices. Connect each vertex in I ′ to all vertices in U , and
assign a weight that is larger than the sum of all other weights in H to
every new edge.
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The goal of these modifications is to ensure that the cluster graph correspond-
ing to the maximum weight matching has at most d clusters. A matching
edge between a vertex from U to a vertex from I models that the cluster
corresponding to the vertex of U must be deleted, since we decided to keep
the cluster corresponding to the vertex of I. With the additional vertices I ′,
we model that at least |U |−d′ clusters corresponding to vertices in U must be
deleted. In the following lemma, we prove the correctness of this approach.

Lemma 3. Let H be an auxiliary graph constructed as described. A max-

imum weight matching of H provides an optimal d-CVD Compression
solution.

Proof. We show that each maximum matching provides a d-CVD solution.
The optimality of the solution can be demonstrated in complete analogy
to Lemma 2.

In order to ensure that the resulting graph is a d-cluster graph, the number
of clusters that do not contain vertices in S can be at most d′ = d− |S|. We
have to create an additional cluster whenever a vertex of U is matched via
an edge between T and U , or via an edge between a vertex in I and U . An
edge between a vertex in U and a vertex in I ′ does not create an additional
cluster.

Each of the |U |−d′ vertices in I ′ is matched in a maximum weight match-
ing, because of our choice of weights. Therefore, at most d′ of the vertices
in U are matched via edges that are not incident to vertices in I ′. The
matching thus contains at most d′ edges that create new clusters. Since
there were d− d′ clusters in G[S], the graph corresponding to the matching
is a d-cluster graph.

The modifications that have to be applied to the auxiliary graph can be
performed in O(k6) time, since this graph contains O(k3) vertices. We can
thus bound the running time of the algorithm as in Section 2.

Theorem 5. Weighted d-Cluster Vertex Deletion can be solved in O(2k·
k9+nm) time, and unweighted d-Cluster Vertex Deletion can be solved

in O(2k · k6 log k + nm) time.
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(a) The original graph G with
two non-adjacent permanent
vertices.

(b) After Reduction Rule 5.

(c) The graph G′ with a vertex
cover X (marked with circles).

(d) The 2-cluster graph after
the removal of X .

Figure 5: Example of the algorithm for 2-Cluster Vertex Deletion
when a size-2 independent set of vertices that cannot be deleted is given.
Black vertices are permanent.

3.2 Solving d-Cluster Vertex Deletion via reduction to
Vertex Cover

Here, we present an algorithm that solves weighted d-Cluster Vertex
Deletion via the computation of minimum weight vertex covers.5 Com-
pared to the fixed-parameter tractability result from Section 3.1, which is
only based on the parameter k, we now employ the combined parameter (d, k).

The idea is to try all independent sets of size at most d and to solve
weighted d-Cluster Vertex Deletion for the case that these vertices are
not deleted from the graph. Since in a d-cluster graph any set of vertices from
different clusters forms an independent set, at least one of the independent
sets of size at most d must be a set of vertices that remain in the graph.

Suppose that such an independent set D of size at most d is given. We call
the vertices in D permanent. In the following, we describe how to compute
the minimum weight d-CVD set of such a graph; an example is shown in
Figure 5. First, we perform the following reduction rule.

5A vertex cover of a graph is a set C of graph vertices such that every graph edge has
at least one endpoint in C.
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Reduction Rule 5. Delete all vertices from the graph that are not adjacent

to any vertex in the independent set D and all vertices that are adjacent to

more than one vertex in D.

The correctness of Reduction Rule 5 is obvious; an example of its applica-
tion is given in Figure 5b. For each deleted vertex v, we decrease k by ω(v).
Let G be a graph with a size-d independent set of permanent vertices af-
ter application of Reduction Rule 5. All non-permanent vertices of G are
adjacent to exactly one permanent vertex. To produce a cluster graph, we
also have to ensure that all neighbors of a permanent vertex are adjacent,
and neighbors of different permanent vertices are non-adjacent. These two
attributes can be encoded into a graph G′ such that a vertex cover of G′ is a
vertex set whose removal establishes the attributes in G. We construct the
graph G′ from G as follows: For any pair u, v of non-permanent vertices that
is adjacent to the same permanent vertex, we do the following:

• remove the edge {u, v}, if u and v are adjacent;

• insert the edge {u, v}, otherwise.

Furthermore, we remove all permanent vertices. After this, we have ob-
tained G′ (for an example of this construction see Figure 5c).

In the following lemma, we show that a vertex cover of G′ is a d-CVD
set of G; an example of this equivalence is shown in Figures 5c and 5d.

Lemma 4. Let G be a graph with a size-d independent set of permanent

vertices that is reduced with respect to Reduction Rule 5 and G′ a graph

constructed as described above. Then, a vertex set X is a vertex cover of G′

if and only if X is a d-CVD set of G.

Proof. Let X be a vertex cover of G′, and let u and v be two non-permanent
vertices in V \ X. We show that u and v are adjacent in G if and only if
they are neighbors of the same permanent vertex. Since G is reduced with
respect to Reduction Rule 5, this implies that G \X is a d-cluster graph.

Clearly, u and v are nonadjacent in G′. If u and v are both adjacent to the
same permanent vertex p in G, then they have to be adjacent in G, because
of the way we constructed G′. Hence, the neighborhood of any permanent
vertex p ∈ D in G \ X is a clique. Otherwise, if u and v are adjacent to
different permanent vertices in G, then they cannot be adjacent in G, since
in the construction of G′ from G we did not modify any edges between vertices
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that are neighbors of different permanent vertices. Hence, there are no edges
between neighbors of different permanent vertices in G\X. Therefore, G\X
comprises exactly d clusters, which means that X is a d-CVD set of G.

The same reasoning can be applied to show that a d-CVD set of G that
does not delete any permanent vertices is a vertex cover of G′.

We now bound the running time of computing a d-CVD set of a graph,
once an independent set of size at most d that may not be deleted is given.
It fundamentally relies on a fixed-parameter algorithm for weighted Vertex
Cover [31].

Lemma 5. Let G = (V, E) be a graph and D ⊆ V an independent set of size

at most d. A minimum weight d-CVD set of G of weight at most k that does

not delete any vertex v ∈ D can be computed in O(1.40k + n2) time.

Proof. We bound the running time of the algorithm that was described; the
correctness follows from its description.

Applying Reduction Rule 5 can be performed in O(n2) time. Construct-
ing G′ also runs in O(n2) time. The computation of minimum weight vertex
covers of weight at most k can be done in O(1.40k + kn) time [31]. Overall,
this amounts to the claimed running time.

Combining this approach with the kernelization algorithm from Theo-
rem 4, we achieve the following running time.

Theorem 6. Weighted d-Cluster Vertex Deletion can be solved in

running time O(1.40k · k3d + nm).

Proof. The kernelization algorithm runs in O(nm) time. After kernelization

the graph comprises O(k3) vertices. Hence, there are
(

k3

d

)

= O(k3d) possible
choices for independent sets of size d. By Lemma 5, we can find a minimum
weight d-CVD set of a graph of size O(k3) in which an independent set D of
size at most d cannot be deleted in O(1.40k + k6) = O(1.40k) time. This is
done for all O(k3d) sets, and the best solution is stored. Clearly, the overall
running time is O(1.40k · k3d + nm).

For the unweighted case, we can apply the currently fastest algorithm
for unweighted Vertex Cover by Chen et al. [9] in combination with the
size O(k2) kernel for unweighted 3-Hitting Set, yielding an improved run-
ning time.
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Theorem 7. Unweighted d-Cluster Vertex Deletion can be solved in

running time O(1.28k · k2d + nm).

3.3 Combining branching and reduction to Vertex Cover

Clearly, the algorithm from Theorem 6 is only feasible for small values of d.
In this section, we describe an algorithm that is useful if neither d nor k is
very small, and combines an improved branching strategy with the algorithm
from Theorem 6.

First, we apply the kernelization algorithm from Theorem 4. Next, we
perform a search tree algorithm that branches on forbidden subgraphs. For
a vertex v in a forbidden subgraph, we have two choices: either we have to
delete v, or v is one of the remaining vertices in the d-cluster graph. If v is
deleted, the combined parameter k +d decreases by ω(v) ≥ 1. Explicitly not
deleting v means that we assign a cluster to v. In this case, we call v perma-

nent. If v does not have any permanent neighbors, then we have assigned a
new cluster. Hence, k + d also decreases by 1.

Let k′ be the sum of the weights of the vertices that may still be deleted
at a given search tree node and d′ the number of clusters that may still be
assigned. Before branching, we perform the following data reduction rule.

Reduction Rule 6. If G contains a P3 with two permanent vertices u, v and

one non-permanent vertex w, then delete w from G and set k′ := k′ − ω(w).

Proof of correctness. Since we may not delete any of the two permanent ver-
tices u and v, we have to delete vertex w in order to eliminate the P3.

Clearly, if k′ < 1, then we cannot delete any vertices and either the graph
is already a d-cluster graph or this particular branch of the search tree is a
dead end. Furthermore, if d′ = 0, then we cannot assign further clusters. This
means that there is an independent set of d permanent vertices. By Lemma 5,
we can find a d-CVD set of such a graph in O(1.40k + k6) = O(1.40k)
time. In the following, we describe the branching rules for the case k′ ≥ 1
and d′ > 0. After application of Reduction Rule 6, every P3 contains at most
one permanent vertex.

First, we branch on P3’s that consist of vertices that are not adjacent
to permanent vertices. If such a P3 does not exist, then we branch on P3’s
that contain a permanent vertex u that is not the middle vertex of the P3.
Finally, we show that if none of the other cases applies, then we can find a
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Figure 6: Branching rules on P3’s that are not adjacent to permanent
vertices (Case 1) and P3’s that contain one permanent non-middle ver-
tex (Cases 2.1–2.3). Dashed vertices and edges are deleted, black vertices
are permanent.

minimum weight d-CVD set of the graph by computing a minimum weight
vertex cover. In the following, we describe the branching rules in detail; each
of them is also shown in Figure 6.

Case 1: There is a P3 uvw such that u, v, and w are not adjacent
to permanent vertices. We branch into three cases. In the first case, we
delete u; the parameter k′ + d′ decreases by at least 1. In the second case,
we mark u as permanent and delete w; the parameter k′ + d′ decreases by at
least 2 (one new assigned cluster and one deleted vertex). In the third case
we mark u and w as permanent and delete v; the parameter k′ +d′ decreases
by at least 3 (two new assigned clusters and one deleted vertex).

Case 2: There is a P3 uvw such that u is permanent and v and w
are non-permanent. We consider several subcases of this case.
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Case 2.1: Vertex w has no permanent neighbors. We branch into
two cases. In the first branch, we delete w; the parameter decreases by at
least 1. In the second branch, we mark w as permanent and thus delete v; the
parameter decreases by at least 2 (one new assigned cluster and one deleted
vertex).

Case 2.2: Vertex w has a permanent neighbor x and u (or x) has a
non-permanent neighbor s that is not adjacent to v (or w). Without
loss of generality assume that u has a neighbor s that is not adjacent to v.
We branch into two cases. In the first branch, we delete v; the parameter
decreases by at least 1. In the second branch, we mark v as permanent and
may thus delete s and w; the parameter decreases by at least 2.

Case 2.3: Vertex w has a permanent neighbor x and v (or w) has a
non-permanent neighbor s that is not adjacent to u (or x). Without
loss of generality assume that v has a neighbor s that is not adjacent to u.
We branch into two cases. In the first branch, we delete v; the parameter
decreases by at least 1. In the second branch, we mark v as permanent and
may thus delete s and w; the parameter decreases by at least 2.

Case 2.4: Otherwise. If none of the other subcases of Case 2 applies,
then the following must hold: Clearly, vertex w has a permanent neighbor x.
Otherwise, Case 2.1 would apply. Furthermore, v is adjacent to all non-
permanent neighbors of u, since Case 2.2 does not apply. Also, u is adjacent
to all non-permanent neighbors of v other than w, since Case 2.3 does not
apply. Finally, there is no permanent neighbor of u that is not adjacent
to v and vice versa, since we performed Reduction Rule 6. Hence, N [v] =
N [u]∪{w}. Using the same arguments we can show that N [w] = N [x]∪{v}.
We delete that vertex of v and w which has lower weight; no branching takes
place. For the correctness, consider the following: Clearly, we have to delete
at least one of v and w. Let v be the vertex of lower weight of v and w.
Suppose that there is a d-CVD set S that contains w, where ω(w) ≥ ω(v).
In case v ∈ S, we can reinsert w into the graph without violating the d-cluster
property (because w is only adjacent to neighbors of x and to v). Obviously,
the weight of the solution decreases. In case v /∈ S, we can delete v from the
graph and reinsert w into the graph, again without violating the d-cluster
property. Therefore, deleting the vertex that has lower weight is optimal.
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Case 3: Otherwise. The following must hold: Since Case 1 does not
apply, every P3 uvw contains at least one vertex that is adjacent to a per-
manent vertex. Furthermore, if a P3 uvw contains a permanent vertex, then
this permanent vertex is v. Otherwise, Case 2 would apply. Therefore, every
connected component either contains a permanent vertex or it is an isolated
cluster. Also, if a non-permanent vertex v is adjacent to a permanent ver-
tex u, then all of v’s neighbors must be adjacent to u. Otherwise, there would
be a P3 uvw in which the permanent vertex is not v.

If the graph contains more than d connected components, then we must
remove isolated clusters to decrease the number of clusters (all other con-
nected components contain a permanent vertex and thus cannot be com-
pletely deleted). We remove isolated clusters of minimum weight until ei-
ther k′ < 1 or the graph contains exactly d connected components. In the
first case, we cannot obtain a d-cluster graph, in the second case, we can
mark the remaining isolated clusters as permanent. Then, there is an inde-
pendent set of permanent vertices of size at most d and we can thus compute
a d-CVD set with weight at most k′ in O(1.40k′

) time (Lemma 5).

Theorem 8. Weighted d-Cluster Vertex Deletion can be solved in

running time O(1.84k+d + nm).

Proof. We prove the theorem by bounding the running time of the described
algorithm. The correctness of the algorithm follows from the given descrip-
tion.

As shown in Theorem 4, kernelization can be done in O(nm) time. We
bound the size of the search tree by analyzing the branching vectors and their
branching number; for details on this type of analysis, we refer to [29, Chapter
8]. In the search tree, the branching vector with the largest branching number
is (1, 2, 3) from Case 1. The branching number of this vector is 1.84. Hence,
the search tree has size O(1.84k+d). The computation of minimum weight
vertex covers is also performed by a search tree procedure, whose largest
branching number is 1.40. Hence, applying the fixed-parameter algorithm
for weighted Vertex Cover in case d′ = 0 does not increase the worst-case
search tree size.

Every step at a search tree node can be computed in polynomial time.
By interleaving kernelization and branching, the running time for the search
tree can be improved from O(1.84k+d · poly(k)) to O(1.84k+d) [30]. Together
with the time needed for the kernelization (O(nm)), we arrive at the claimed
overall running time bound.
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4 Outlook

It is open to improve the trivial factor-3 approximation for Cluster Ver-
tex Deletion. Cai et al. [8] improved the approximation factor for (un-
weighted) Feedback Vertex Set in tournaments, which is also charac-
terized by a 3-vertex forbidden subgraph, from 3 to 2.5; perhaps similar
techniques are applicable here. Moreover, the exponential upper bounds for
our search-tree based algorithms should be improvable. More importantly,
for the unweighted case of Cluster Editing, O(k)-vertex problem kernels
are known [13, 22], whereas correspondingly for Cluster Vertex Dele-
tion only an O(k2)-vertex kernel is known. Also, improving the O(k3)-vertex
problem kernel for the weighted case would be desirable. Further problem
variants, for example a variation of d-Cluster Vertex Deletion that
specifies the exact number of desired clusters could be practically relevant.
While the algorithms from Subsections 3.2 and 3.3 can be applied to this
problem, the method of iterative compression is not applicable, since the
property of comprising a fixed number of clusters is not hereditary. Finally,
all our results are worst-case estimates. Practical tests based on algorithm
engineering seem promising.
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