
Proc. 8th LATIN, 2008

Fixed-Parameter Algorithms for

Cluster Vertex Deletion

Falk Hüffner⋆, Christian Komusiewicz⋆⋆, Hannes Moser⋆ ⋆ ⋆, and
Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

{hueffner,ckomus,moser,niedermr}@minet.uni-jena.de

Abstract. We initiate the first systematic study of the NP-hard Clus-
ter Vertex Deletion (CVD) problem (unweighted and weighted)
in terms of fixed-parameter algorithmics. In the unweighted case, one
searches for a minimum number of vertex deletions to transform a graph
into a collection of disjoint cliques. The parameter is the number of ver-
tex deletions. We present efficient fixed-parameter algorithms for CVD.
Our iterative compression algorithm for CVD seems to be the first non-
trivial application of this fairly new technique to a problem that is not
a feedback set problem. Moreover, we study the variant of CVD where
the number of cliques to be generated is specified. Here, we detect con-
nections to fixed-parameter algorithms for (weighted) Vertex Cover.

1 Introduction

Graph modification problems form a core topic in algorithmic graph theory
with many applications. In particular, cluster graph modification problems [21]
have recently received considerable interest. Here, the basic problem is, given
an undirected graph G, to find a minimum number of editing operations that
transform G into a collection of disjoint complete subgraphs, a cluster graph.
Herein, the three standard editing operations are adding edges, deleting edges,
and deleting vertices. For instance, Cluster Editing asks whether a graph
can be transformed into a cluster graph by altogether at most k edge additions
and edge deletions. Cluster Editing is NP-complete; it recently has shown
particularly useful for clustering biological data [6, 19]. Whereas also a factor-
2.5 polynomial-time approximation for Cluster Editing is known [3, 23], in
practical applications fixed-parameter algorithms (combined with some heuris-
tics) providing optimal solutions seem to dominate [4, 6, 19]. Parameterized
complexity studies for Cluster Editing were initiated by Gramm et al. [11]

⋆ Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
PIAF (fixed-parameter algorithms), NI 369/4.

⋆⋆ Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.
⋆ ⋆ ⋆ Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative com-

pression for solving hard network problems), NI 369/5.

Proc. 8th LATIN, 2008

and have been further pursued in a series of papers [4, 6, 7, 10, 12, 18, 19].
A previously shown bound of O(1.92k + n3) for an n-vertex graph [10] can be
improved by combining a linear-time problem kernel [7] with the currently best
claimed running time of O(1.83k + n3) [4] to get an algorithm with running
time O(1.83k + n + m), where m is the number of edges in the graph. Moreover,
problem kernels, based on efficient data reduction rules, with only O(k) vertices
are known [7, 12], the best upper bound currently being 4k [12].

Whereas Cluster Editing has been subject to intensive research, its “sis-
ter problem” Cluster Vertex Deletion so far has been widely neglected.
Here, we aim at finding a minimum number of vertices such that their deletion
transforms a given graph into a cluster graph.1

Weighted Cluster Vertex Deletion
Instance: An undirected graph G = (V, E), a vertex weight function ω :
V → [1,∞), and a nonnegative number k.
Question: Is there a subset X ⊆ V with

∑
v∈X

ω(v) ≤ k such that
deleting all vertices in X from G results in a cluster graph (i. e., a graph
where every connected component forms a complete graph)?

The unweighted version asks whether there exists a subset X ⊆ V such that |X | ≤
k (in other words, all vertices have weight exactly one).

Motivation. As Cluster Editing, Cluster Vertex Deletion may find ap-
plications in graph-modeled data clustering: Assume that we have a number of
samples, some of which are equivalent (e. g., DNA samples, some of which are
from the same species) and a method to test two samples for equivalence. A
graph is formed where each vertex corresponds to a sample and an edge between
two vertices is added when their samples are tested as equivalent. In the absence
of errors, the resulting graph is a cluster graph, where each connected component
corresponds to an equivalence class (e. g., a species). However, an unknown sub-
set of samples may be contaminated and can produce unpredictable comparisons
to other samples. An optimal solution for unweighted Cluster Vertex Dele-
tion, that is, a minimum-cardinality set of vertices whose deletion produces a
cluster graph, then provides the most parsimonious explanation for the data un-
der this model. This clearly extends to the weighted case. Finally, in comparison
to Cluster Editing, a small parameter value k (that is, the number of editing
operations) appears even more likely for Cluster Vertex Deletion, making
a parameterized approach particularly meaningful here.

Known results. By general results for vertex deletion problems for hereditary
graph properties, it follows that already unweighted Cluster Vertex Dele-
tion is NP-complete [15]. Only few specific results for (unweighted) Cluster

1 Parameterized problems (as follows) usually are formulated as decision problems—
all our algorithms will also solve the corresponding optimization problem within the
same time bounds.

2

Proc. 8th LATIN, 2008

Vertex Deletion are known.2 These are based on the simple observation that
a graph is a cluster graph if and only if it does not contain an induced P3, a path
of three vertices.3 Gramm et al. [10] used an elaborate case distinction found
with computer help to derive a search tree algorithm running in O(2.26km) time
for an m-edge graph. This can be improved to O(2.08k + n3), n denoting the
number of vertices, by using a straightforward reduction of unweighted Clus-
ter Vertex Deletion to the 3-Hitting Set problem (transforming each
induced P3 into a three-element set) and employing a sophisticated algorithm
for 3-Hitting Set [22]. Moreover, kernelization results for 3-Hitting Set [1]
also imply an O(k2)-vertex problem kernel for unweighted Cluster Vertex
Deletion, which can be found in O(n3) time. A weighted Cluster Vertex
Deletion instance can be easily transformed into a weighted 3-Hitting Set
instance. With this transformation, an O(k3)-vertex problem kernel result for
weighted 3-Hitting Set [2] can be adapted to weighted Cluster Vertex
Deletion. Moreover, weighted 3-Hitting Set possesses an elaborate search
tree algorithm based on case distinction [8], implying an O(2.25k + n3) running
time for weighted Cluster Vertex Deletion.

New results. One of our main results is an elegant iterative compression algo-
rithm for weighted Cluster Vertex Deletion using matching techniques,
running in O(2kk9 + n3) time. Notably, this seems to be the first nontrivial ap-
plication of the technique of iterative compression (described by Reed et al. [20];
see also [16, Chapter 11]) to a non-feedback set problem. We extend our studies
to the (also NP-hard) case where the number of clusters to be generated is given
by a second parameter d. Such studies have also been undertaken for Cluster
Editing [9, 12, 21], but note that for Cluster Editing clearly d ≤ 2k. By way
of contrast, since vertex deletion is a “stronger” operation than edge deletion, in
the case of Cluster Vertex Deletion also d > 2k is possible. Observe that
d = 1 yields the Clique problem, leading to the NP-hardness of so-called d-
Cluster Vertex Deletion also for d > 1. Since d-Cluster Vertex Dele-
tion is already NP-hard for d = 1, a parameterization only with respect to the
parameter d is meaningless. Considering the combined parameter (d, k), however,
we can provide further fixed-parameter tractability results. First, we nontrivially
extend the kernelization result for weighted Cluster Vertex Deletion to a
problem kernel for weighted d-Cluster Vertex Deletion, again achieving an
O(k3)-vertex problem kernel. Based on this, we develop three fixed-parameter
algorithms for weighted d-Cluster Vertex Deletion with the following run-
ning times: O(3k+n3), O(1.40kk3d+n3), and O(1.84k+d+n3). Depending on the
value of d, each of these algorithms may be preferable in certain constellations.

2 Jansen et al. [14] studied the closely related problem of finding d pairwise dis-
joint cliques with maximum overall number of vertices, motivated by applications
in scheduling. Note that, other than in Cluster Vertex Deletion, they allowed
to have edges between cliques. Jansen et al. gave polynomial-time algorithms for
special graph classes, contrasting the NP-complete general case.

3 In the remainder of this work, when simply writing of containment of a P3 in a graph
we actually always refer to an induced P3.

3

Proc. 8th LATIN, 2008

CompressCVD(G,X)
1 X ′ ← X

2 for each S ⊆ X:

3 if G[S] is a cluster graph:
4 G′ ← G \ (X \ S); R← V (G′ \ S)
5 G′ ←ReduceRule1(G′)
6 G′ ←ReduceRule2(G′)
7 G′ ←ReduceRule3(G′)
8 Classify each vertex u in R according to N(u) ∩ S

9 H ← auxiliary graph
10 M ← maximum weight matching in H

11 Delete all vertices not in a class corresponding to an edge in M

12 D← vertices deleted in lines 4–7 and 11
13 if ω(D) < ω(X ′):
14 X ′ ← D

15 return X ′

Fig. 1: Pseudo-code for CompressCVD, where ω(A) :=
∑

v∈A
ω(v) for A ⊆ V .

In the latter two algorithms, fixed-parameter algorithms for weighted Vertex
Cover play a decisive role.

Due to the lack of space, most details are deferred to the full version of this
paper.

2 Iterative compression for Cluster Vertex Deletion

We now describe a novel iterative compression algorithm for weighted Clus-
ter Vertex Deletion. General considerations about iterative compression
algorithms can be found in [13] and [16, Chapter 11]. We first describe how to
employ a compression routine, and then the compression routine itself. We call
a set of vertices whose deletion produces a cluster graph a CVD set.

The general idea behind our iterative compression is as follows. We start
with V ′ = ∅ and X = ∅; clearly, X is a CVD set for G[V ′]. Iterating over all
graph vertices, step by step we add one vertex v /∈ V ′ from V to both V ′ and X .
Then X is still a CVD set for G[V ′], although possibly not a minimum one.
We can, however, obtain a minimum one by applying the compression routine
CompressCVD. It takes a graph G and a CVD set X for G, and returns a
minimum CVD set for G. Therefore, it is a loop invariant that X is a minimum-
size CVD set for G[V ′]. Since eventually V ′ = V , we obtain an optimal solution
for G once the algorithm returns X .

In the rest of this section, we describe the compression routine Compress-
CVD following the pseudo-code in Fig. 1. For this, consider a smaller CVD
set X ′ as a modification of the larger CVD set X . This modification retains
some vertices Y (X , while the other vertices S := X \ Y are replaced by new
vertices from V \X . The idea is to try by brute force all 2|X|−1 partitions of X

4

Proc. 8th LATIN, 2008

into such sets Y and S (line 2). For each such partition, the vertices from Y are
immediately deleted, since we already decided to take them into the CVD set.
In the resulting instance G′ = (V ′, E′) := G \ Y , it remains to find an optimal
CVD set that is disjoint from S. This is a much easier task than finding a CVD
set in general; in fact, it can be done in polynomial time using data reduction
and maximum matching.

First, we discard partitions where S does not induce a cluster graph (line 3);
these cannot lead to a solution, since we determined that none of the vertices in S
would be deleted. Further, R := V ′ \ S also induces a cluster graph, since R =
V \ X and X is a CVD set. Therefore, the following problem remains:

CVD Compression
Instance: An undirected graph G = (V, E), a vertex weight function
ω : V → [1,∞), and a subset S ⊆ V such that G[S] and G\S are cluster
graphs.
Task: Find a set X ′ ⊆ V \ S such that G \ X ′ is a cluster graph and∑

v∈X′ ω(x) is minimum.

The instance can now be simplified by a series of data reduction rules. We
call a connected component in a cluster graph a cluster.

Reduction Rule 1. Delete all vertices in R := V \S that are adjacent to more

than one cluster in G[S].

Reduction Rule 2. Delete all vertices in R that are adjacent to some, but not

all vertices of a cluster in G[S].

Reduction Rule 3. Remove connected components that are complete graphs.

After Rules 1–3 have been applied, the instance is much simplified. In each
cluster in G[R], we can divide the vertices into equivalence classes according to
their neighborhood in S; each class then contains either vertices adjacent to all
vertices of a particular cluster in G[S], or the vertices adjacent to no vertex in S
(see Fig. 2a). This classification is useful because of the following lemma.

Lemma 1. In an optimal CVD compression solution, for each cluster in G[R],
either the vertices of exactly one class are present, or the whole cluster is deleted.

Because of Lemma 1, the remaining task is an assignment of each cluster
in G[R] to one of its classes (corresponding to the preservation of this class, and
the deletion of all other classes within the cluster) or to nothing (corresponding to
the complete deletion of the cluster). However, we cannot do this independently
for each cluster; we must not choose two classes from different clusters in G[R]
which are connected to the same cluster in G[S], since that would create a P3.
This can be modelled as a weighted bipartite matching problem in an auxiliary
graph H , where each edge corresponds to a possible choice. The graph H is
constructed as follows (see Fig. 2b):

– Add a vertex for every cluster in G[R] (white vertices).

5

Proc. 8th LATIN, 2008

S

(a) Classification

S

1

1

2

2

2
2

(b) The assignment problem

S

(c) Final resulting cluster graph

Fig. 2: Assignment problem in the iterative compression, unweighted case.

– Add a vertex for every cluster in G[S] (black vertices in S).

– For a cluster CS in G[S] and a cluster CR in G[R], add an edge between
the vertex for CS and the vertex for CR if there is a class in CR connected
to CS . This edge corresponds to choosing this class for CR and is weighted
with the total weight of the vertices in this class.

– Add a vertex for each class in a cluster CR that is not connected to a cluster
in G[S] (black vertices outside S), and connect it to the vertex represent-
ing CR. Again, this edge corresponds to choosing this class for CR and is
weighted with the total weight of the vertices in this class.

Since we only added edges between a black and a white vertex, H is bipartite.
The task is now to find a maximum-weight bipartite matching, that is, a set of
edges of maximum weight where no two edges have an endpoint in common.
This allows any choice for a cluster, as long as no two clusters share edges to the
same cluster in G[S]. The following lemma shows that this is a valid approach:

Lemma 2. A maximum-weight bipartite matching in H provides an optimal

CVD compression solution.

Fig. 2c shows the resulting cluster graph for our example after deleting the
vertex sets corresponding to edges that are not selected by the maximum-weight
matching shown in Fig. 2b by bold edges. Note that the size of the solution can
be upper-bounded by k + 1, since ∀v ∈ V : ω(v) ≥ 1. Altogether, we obtain

Proposition 1. Weighted Cluster Vertex Deletion can be solved in O(2k ·
n2(m + n log n)) time.

6

Proc. 8th LATIN, 2008

For the unweighted case, we can get better running times, since unweighted
matchings can be found faster than weighted ones.

Theorem 1. Unweighted Cluster Vertex Deletion can be solved in O(2k ·
km

√
n log n) time.

Problem kernelization leads to the following.

Theorem 2. Unweighted Cluster Vertex Deletion can be solved in O(2k ·
k6 log k + n3) time.

Curiously, we can use this unweighted algorithm as a subroutine to speed up
the weighted case: if we have a solution for an unweighted instance, we can get
an optimal weighted solution by executing the compression routine once. This
works because the compression does only require that the set X to compress is
a CVD set, and does not make any assumptions about its weight.

Theorem 3. Weighted Cluster Vertex Deletion can be solved in O(2k ·
k9 + n3) time.

In fact, we even have a stronger parameterization in Theorem 3 when compared
to Proposition 1: as parameter k, we can use the number of vertices in an optimal
unweighted solution, which is less than or equal to the number of vertices in an
optimal weighted solution, which in turn is less than or equal to the minimum
weight of a weighted solution.

Since the matching subproblem is the bottleneck of the algorithm, it would
be nice to replace it with something simpler. However, we can show that the
assignment problem in the last step of the compression routine is as hard as
the task of finding a maximum weight matching in a bipartite graph, even after
applying Reduction Rules 1–3. This indicates that the bottleneck of computing
the maximum weight matching might actually be very difficult to overcome with
our approach.

3 Cluster Vertex Deletion with a fixed number of clusters

In clustering applications, the number of desired clusters is often known. The
deletion of vertices should then produce a d-cluster graph, that is, a graph com-
prising exactly d clusters.

Weighted d-Cluster Vertex Deletion
Instance: An undirected graph G = (V, E), a vertex weight function
ω : V → [1,∞), and a nonnegative number k.
Question: Is there a subset X ⊆ V with

∑
v∈X

ω(v) ≤ k such that
deleting all vertices in X from G results in a d-cluster graph?

1-Cluster Vertex Deletion is equivalent to Clique, since a 1-cluster graph
is a complete graph. Hence, 1-Cluster Vertex Deletion is NP-complete.
More generally, we have the following.

Proposition 2. d-Cluster Vertex Deletion is NP-complete for any con-

stant integer d.

7

Proc. 8th LATIN, 2008

3.1 An O(3k + n
3) time algorithm

We start with describing a simple search tree algorithm for weighted d-Cluster
Vertex Deletion parameterized by the weight k of a solution set. In the
search tree, we branch on induced P3’s until the graph is a cluster graph, and
then remove surplus clusters in case the graph contains more than d clusters.
Before starting the search tree procedure, we perform data reduction. The subse-
quent problem kernel result makes use of the corresponding result for 3-Hitting
Set [2].

Theorem 4. Weighted d-Cluster Vertex Deletion admits a problem ker-

nel containing O(k3) vertices, and it can be found in O(n3) time.

After kernelization, we perform a search tree procedure. We branch into
three cases to destroy a P3 by vertex deletion, deleting a different vertex in each
branch. Since the minimum vertex weight is 1, the parameter is reduced by at
least 1 in each search tree branch. Let k′ be the sum of the weights of the vertices
that may still be removed at a given search tree node. Branching is performed
as long as the graph contains a P3 and k′ ≥ 1. If k′ < 1, and the graph still
contains a P3, then we have not found a d-CVD set of weight at most k and
we cannot remove further vertices. If otherwise the graph contains no P3, then
it is a cluster graph. Let S be the set of vertices that were removed so far. We
distinguish four cases.
1. k′ < 0. The weight of S exceeds k. Therefore, no solution was found.
2. G\S comprises less than d clusters. We can discard S, since S is not a d-CVD
set and no superset of S is a d-CVD set.
3. G \ S comprises more than d clusters. We compute the sum of the vertex
weights for all remaining clusters, and remove a cluster with minimum weight
until either G\S is a d-cluster graph (then Case 4 applies) or k′ < 1 (no solution
set was found in this search tree branch).
4. G \S is a d-cluster graph. In this case, S is a d-CVD set of weight at most k.
Clearly, this search tree procedure finds a d-CVD set of minimum weight, since it
explores all possibilities to destroy the P3’s of the graph and afterwards optimally
removes surplus clusters (in Case 3). Below, we bound the running time of the
described algorithm.

Theorem 5. Weighted d-Cluster Vertex Deletion can be solved in run-

ning time O(3k + n3).

3.2 An O(1.40k
· k

3d + n
3) time algorithm

Now we present an algorithm that solves weighted d-Cluster Vertex Dele-
tion via the computation of minimum weight vertex covers.4

The idea is to try all independent sets of size d and to solve weighted d-
Cluster Vertex Deletion for the case that these vertices are not removed

4 A vertex cover of a graph is a set C of graph vertices such that every graph edge
has at least one endpoint in C.

8

Proc. 8th LATIN, 2008

(a) The original graph G

with two non-adjacent
permanent vertices.

(b) After Rule 4.

(c) The graph G′ with a
vertex cover X (marked
with circles).

(d) The 2-cluster graph
after the removal of X.

Fig. 3: Example of the algorithm for Weighted 2-Cluster Vertex Deletion
when a size-2 independent set of vertices that cannot be deleted is given. Black
vertices are permanent.

from the graph. Since in a d-cluster graph any set of d vertices from d different
clusters forms an independent set, at least one of the independent sets of size d
must be a set of vertices that remain in the graph.

Suppose that such an independent set D of size d is given. We call the vertices
in D permanent. In the following, we describe how to compute the minimum
weight d-CVD set of such a graph; an example is shown in Fig. 3. First, we
perform the following reduction rule.

Reduction Rule 4. Delete all vertices from the graph that are not adjacent to

any vertex in D and all vertices that are adjacent to more than one vertex in D.

The correctness of Rule 4 is obvious; an example of its application is given
in Fig. 3b. For each deleted vertex v, we decrease k by ω(v). Let G be a graph
with a size-d independent set of permanent vertices after application of Rule 4.
All non-permanent vertices of G are adjacent to exactly one permanent vertex.
To produce a cluster graph, we also have to ensure that all neighbors of a per-
manent vertex are adjacent, and neighbors of different permanent vertices are
non-adjacent. These two attributes can be encoded into a graph G′ such that a
vertex cover of G′ is a vertex set whose removal establishes the attributes in G.
We construct the graph G′ from G as follows: For any pair u, v of non-permanent
vertices that is adjacent to the same permanent vertex we do the following: if u
and v are adjacent, then remove the edge {u, v}; otherwise, insert the edge {u, v}.
Furthermore, remove all permanent vertices. After this, we have obtained G′ (for
an example of this construction see Fig. 3c).

In the following lemma, we show that a vertex cover of G′ is a d-CVD set
of G; an example of this equivalence is shown in Figures 3c and 3d.

9

Proc. 8th LATIN, 2008

Lemma 3. Let G be a graph with a size-d independent set of permanent vertices

that is reduced with respect to Rule 4 and G′ a graph constructed as described

above. Then, a vertex set X is a vertex cover of G′ iff X is a d-CVD set of G.

We now bound the running time of computing a d-CVD set of a graph, once
a size-d independent set that may not be deleted is given. It fundamentally relies
on a fixed-parameter algorithm for weighted Vertex Cover [17].

Lemma 4. Let G = (V, E) be a graph and D ⊆ V an independent set of size d.
A minimum weight d-CVD set of G of weight at most k that does not delete any

vertex v ∈ D can be computed in O(1.40k + n2) time.

Combining this approach with the kernelization algorithm from Theorem 4,
we achieve the following running time.

Theorem 6. Weighted d-Cluster Vertex Deletion can be solved in run-

ning time O(1.40k · k3d + n3).

For the unweighted case, we can apply the current fastest algorithm for un-
weighted Vertex Cover by Chen et al. [5], yielding an improved running time.

Theorem 7. Unweighted d-Cluster Vertex Deletion can be solved in run-

ning time O(1.28k · k3d + n3).

3.3 An O(1.84k+d + n
3) time algorithm

First, we apply the kernelization algorithm from Theorem 4 that produces a
problem kernel consisting of O(k3) vertices. Next, we perform a search tree
algorithm that branches on forbidden subgraphs. For a vertex in a forbidden
subgraph, we have two choices: either we have to delete this vertex, or this vertex
is one of the remaining vertices in the d-cluster graph. Whenever a vertex v is
deleted, the combined parameter k + d decreases by ω(v) ≥ 1. Furthermore,
explicitly not deleting a vertex means that we assign a cluster to this vertex.
Again, we call such a vertex permanent. If the permanent vertex does not have
any neighbors that are marked as permanent, then we have assigned a new
cluster. Hence, k + d also decreases by 1.

Let k′ be the sum of the weights of the vertices that may still be removed at
a given search tree node and d′ the number of clusters that may still be assigned.
Before branching, we perform the following data reduction rule.

Reduction Rule 5. If G contains a P3 with two permanent vertices u, v and

one non-permanent vertex w, then remove w from G and set k′ := k′ − ω(w).

Clearly, if k′ < 1, then we cannot remove any vertices and either the graph
is already a d-cluster graph or this particular branch of the search tree is a dead
end. Furthermore, if d′ = 0, then we have assigned all clusters. This means that
there is an independent set of d permanent vertices. By Lemma 4, we can find
a d-CVD set of such a graph in O(1.40k +k6) = O(1.40k) time. In the following,

10

Proc. 8th LATIN, 2008

we sketch the branching rules in case k′ ≥ 1 and d′ > 0. After application
of Reduction Rule 5, every P3 contains at most one permanent vertex.

First, we branch on P3’s that consist of vertices that are not adjacent to
permanent vertices. If such a P3 does not exist, then we branch on P3’s that
contain a permanent vertex u that is not the middle vertex of the P3. Next,
we branch on isolated clusters that do not contain permanent vertices. Finally,
we show that if none of the other cases applies, then we can find a minimum
weight d-CVD set of the graph by computing a minimum weight vertex cover.

Theorem 8. Weighted d-Cluster Vertex Deletion can be solved in run-

ning time O(1.84k+d + n3).

4 Outlook

Are there any nontrivial polynomial-time approximation algorithms for Clus-
ter Vertex Deletion (weighted and unweighted)? Moreover, the exponential
upper bounds for our search-tree based algorithms should be improvable. More
importantly, for the unweighted case of Cluster Editing, O(k)-vertex prob-
lem kernels are known [7, 12], whereas correspondingly for Cluster Vertex
Deletion only an O(k2)-vertex kernel is known. Also, improving the O(k3)-
vertex problem kernel for the weighted case would be desirable. Finally, all our
results are worst-case estimates. Practical tests based on algorithm engineering
seem promising.

Acknowledgments. We thank the anonymous LATIN referees for pointing out
some inconsistencies in the submitted manuscript and for other comments that
have improved the presentation of this paper.

References

[1] F. N. Abu-Khzam. Kernelization algorithms for d-hitting set problems. In
Proc. 10th WADS, volume 4619 of LNCS, pages 434–445. Springer, 2007.

[2] F. N. Abu-Khzam and H. Fernau. Kernels: Annotated, proper and induced.
In Proc. 2nd IWPEC, volume 4169 of LNCS, pages 264–275. Springer, 2006.

[3] N. Ailon, M. Charikar, and A. Newman. Proofs of conjectures in “Aggre-
gating inconsistent information: Ranking and clustering”. Technical Report
TR-719-05, Department of Computer Science, Princeton University, 2005.

[4] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. PEACE: Parame-
terized and exact algorithms for cluster editing. Manuscript, Lehrstuhl für
Bioinformatik, Friedrich-Schiller-Universität Jena, Sept. 2007.

[5] J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for
vertex cover. In Proc. 31st MFCS, volume 4162 of LNCS, pages 238–249.
Springer, 2006.

[6] F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang.
The cluster editing problem: Implementations and experiments. In
Proc. 2nd IWPEC, volume 4169 of LNCS, pages 13–24. Springer, 2006.

11

Proc. 8th LATIN, 2008

[7] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. Shaw. Efficient
parameterized preprocessing for cluster editing. In Proc. 16th FCT, volume
4639 of LNCS, pages 312–321. Springer, 2007.

[8] H. Fernau. Parameterized algorithms for hitting set: The weighted case. In
Proc. 6th CIAC, volume 3998 of LNCS, pages 332–343. Springer, 2006.

[9] I. Giotis and V. Guruswami. Correlation clustering with a fixed number of
clusters. Theory of Computing, 2:249–266, 2006.

[10] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation
of search tree algorithms for hard graph modification problems. Algorith-

mica, 39(4):321–347, 2004.
[11] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data

clustering: Exact algorithms for clique generation. Theory of Computing

Systems, 38(4):373–392, 2005.
[12] J. Guo. A more effective linear kernelization for cluster editing. In Proc. ES-

CAPE 2007, volume 4614 of LNCS, pages 36–47. Springer, 2007.
[13] F. Hüffner, R. Niedermeier, and S. Wernicke. Techniques for practical fixed-

parameter algorithms. The Computer Journal, 2007. To appear.
[14] K. Jansen, P. Scheffler, and G. Woeginger. The disjoint cliques problem.

RAIRO Recherche Opérationnelle, 31(1):45–66, 1997.
[15] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary

properties is NP-complete. Journal of Computer and System Sciences, 20
(2):219–230, 1980.

[16] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Number 31 in
Oxford Lecture Series in Mathematics and Its Applications. Oxford Univer-
sity Press, 2006.

[17] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms
for weighted vertex cover. Journal of Algorithms, 47(2):320–331, 2003.

[18] F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decom-
position to parameterized bicluster editing. In Proc. 2nd IWPEC, volume
4169 of LNCS, pages 1–12. Springer, 2006. To appear under the title “Ap-
plying modular decomposition to parameterized cluster editing problems”
in Theory of Computing Systems.

[19] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truß, and
S. Böcker. Exact and heuristic algorithms for weighted cluster editing. In
Proc. 6th CSB, volume 6 of Computational Systems Bioinformatics, pages
391–401. Imperial College Press, 2007.

[20] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations

Research Letters, 32(4):299–301, 2004.
[21] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems.

Discrete Applied Mathematics, 144(1–2):173–182, 2004.
[22] M. Wahlström. Algorithms, Measures and Upper Bounds for Satisfiability

and Related Problems. PhD thesis, Department of Computer and Informa-
tion Science, Linköpings universitet, 2007.

[23] A. van Zuylen and D. P. Williamson. Deterministic algorithms for rank
aggregation and other ranking and clustering problems. In Proc. 5th WAOA,
LNCS. Springer, 2007. To appear.

12

	Fixed-Parameter Algorithms forCluster Vertex Deletion
	 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier

