
Isolation Concepts for Efficiently Enumerating

Dense Subgraphs ⋆

Christian Komusiewicz 1 Falk Hüffner 2 Hannes Moser 3

Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany

Abstract

In an undirected graph G = (V,E), a set of k vertices is called c-isolated if it has less
than c · k outgoing edges. Ito and Iwama [ACM Trans. Algorithms, to appear] gave
an algorithm to enumerate all c-isolated maximal cliques in O(4c · c4 · |E|) time. We
extend this to enumerating all maximal c-isolated cliques (which are a superset) and
improve the running time bound to O(2.89c ·c2 · |E|), using modifications which also
facilitate parallelizing the enumeration. Moreover, we introduce a more restricted
and a more general isolation concept and show that both lead to faster enumeration
algorithms. Finally, we extend our considerations to s-plexes (a relaxation of the
clique notion), providing a W[1]-hardness result when the size of the s-plex is the
parameter and a fixed-parameter algorithm for enumerating isolated s-plexes when
the parameter describes the degree of isolation.

Key words: NP-hard problem, parameterized complexity, fixed-parameter
tractability, exact algorithm, clique, s-plex

Preprint submitted to Elsevier 18 February 2009

1 Introduction

Finding and enumerating cliques and clique-like structures in graphs has many
applications ranging from technical networks [14] to social and biological
networks [2,3,13,18]. Unfortunately, clique-related problems are known to be
notoriously hard for exact algorithms, approximation algorithms, and fixed-
parameter algorithms. Consider for example the problem of finding a clique
of maximum size:

Maximum Clique

Input: An undirected graph G = (V, E) and a nonnegative integer k.
Question: Is there a subset of vertices S ⊆ V with |S| ≤ k such that all
vertices in S are pairwise connected in G?

Maximum Clique has been shown to be NP-complete [10], inapproximable
in polynomial time within a factor of |V |1−ǫ [11], and W[1]-hard when param-
eterized with the size k of the maximum clique [6]. Ito et al. [15] introduced
an interesting way out of this quandary by restricting the search to isolated
cliques. Herein, a clique is seen as isolated if the vertices in the clique have
few neighbors outside of the clique. This is formally described via the concept
of c-isolation:

Definition 1 Let G = (V, E) be an undirected graph. A set S ⊆ V of k
vertices is called c-isolated if it has less than c · k outgoing edges, where an
outgoing edge is an edge between a vertex in S and a vertex in V \ S.

⋆ A preliminary version of this paper appeared in the proceedings of the 13th Inter-
national Computing and Combinatorics Conference (COCOON ’07), held in Banff,
Canada, July 16–19 [17]. Fundamental parts of this work together with related top-
ics also appeared in the first author’s diploma thesis [16]. Note that in our conference
version [17] we state that the work by Ito et al. [15], which is the conference version
of Ito and Iwama [14], is flawed. A reason for this statement was a misunderstanding
of Ito et al.’s [15] enumeration concept: they enumerate all isolated maximal cliques,
and not all maximal isolated cliques, as we were assuming.

Email addresses: c.komus@uni-jena.de (Christian Komusiewicz),
hueffner@minet.uni-jena.de (Falk Hüffner), hannes.moser@uni-jena.de
(Hannes Moser), rolf.niedermeier@uni-jena.de (Rolf Niedermeier).
1 Partially supported by the Deutsche Forschungsgemeinschaft, project OPAL (op-
timal solutions for hard problems in computational biology), NI 369/2, and a PhD
fellowship of the Carl-Zeiss-Stiftung.
2 Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4, and the Edmond J. Safra
Foundation.
3 Supported by the Deutsche Forschungsgemeinschaft, project ITKO (iterative
compression for solving hard network problems), NI 369/5, and project AREG (al-
gorithms for generating quasi-regular structures in graphs), NI 369/9.

2

As their main result, Ito and Iwama [14] gave an O(4c · c4 · |E|) time algorithm
for enumerating all c-isolated maximal cliques in a graph. In particular, this
means linear time for constant c and fixed-parameter tractability with respect
to the parameter c.

Instead of c-isolated maximal cliques (that is, cliques that are c-isolated and
not contained in any other clique), we enumerate maximal c-isolated cliques
(that is, cliques that are c-isolated and not contained in any other c-isolated
clique). Clearly, our approach produces a superset of cliques. Using a postpro-
cessing step, we can easily obtain just the c-isolated maximal cliques, if de-
sired (in fact, our algorithms can be modified to directly produce this result).
However, the enumeration of maximal c-isolated cliques has some potential
advantages: it produces “interesting” isolated cliques that the enumeration of
c-isolated maximal cliques misses. Consider for example a clique of size four,
where one vertex additionally has seven degree-1 neighbors. It contains no
2-isolated maximal clique, but one maximal 2-isolated clique. More generally,
adding a hub (vertex connected to all other vertices) to an n-vertex graph
destroys all c-isolated maximal cliques of size up to n/(c + 1), and adding a
hub attached to c · n degree-1 vertices even destroys all c-isolated maximal
cliques. Since hubs and small-degree vertices are a common feature of real-
world networks such as scale-free networks, this might limit the usefulness of
enumerating maximal c-isolated cliques in these cases. In contrast, when enu-
merating c-isolated maximal cliques, hub vertices can just be omitted from
enumerated cliques, leading to potentially more useful results.

Our paper is organized as follows. Section 2 deals with the enumeration of c-
isolated maximal cliques as proposed by Ito and Iwama [14]. We start with de-
scribing their algorithm, and then show how to adapt it to enumerate maximal
c-isolated cliques instead of c-isolated maximal cliques. We further modify the
algorithm to improve the asymptotic running time bound to O(2.89c · c2 · |E|).
Moreover, this allows to parallelize the so far purely sequential enumeration
algorithm. 4 Note that in the rest of the paper we assume for simplicity that
the isolation factor c is an integer.

In Section 3, inspired by Ito and Iwama’s isolation concept, we propose two
further isolation definitions, the weaker (less demanding) min-c-isolation and
the stronger max-c-isolation, both practically motivated. Whereas c-isolation
makes restrictions on the sum of outgoing edges, we now restrict the number of
outgoing edges for at least one vertex (min-c-isolation) or for all vertices (max-
c-isolation) of a vertex set to be less than c. Figure 1 gives an example for
each isolation concept with c = 2. Somewhat surprisingly, we can show that—
compared to c-isolation—both concepts lead to faster enumeration algorithms

4 Note that in the conference version [17] of our paper a weaker bound of 4c instead
of 2.89c was given.

3

max-2-isolationmin-2-isolation 2-isolation

Fig. 1. Example isolated sets for c = 2 and the three isolation concepts. In a
min-c-isolated vertex set, at least one vertex has less than c outgoing edges, in
a c-isolated vertex set S the sum of outgoing edges is less than c · |S|, and in a
max-c-isolated vertex set every vertex has less than c outgoing edges.

Table 1
Summary of the running times of the enumeration algorithms for isolated dense
subgraphs for n-vertex and m-edge graphs.

Enumeration Task Running Time

c-isolated cliques O(2.89c · c2 · m)
min-c-isolated cliques O(2c · c · m + n · m)
max-c-isolated cliques O(2.44c · c · m)
min-c-isolated s-plexes O((s+1)c ·(s+c) ·ns+1+n ·m)

for isolated cliques, improving the exponential factor from 2.89c to 2c and 2.44c,
respectively.

In Section 4, we show how to adapt the isolation scenario to the concept of
s-plexes, a relaxation of cliques occurring, for example, in social network anal-
ysis [25,1,18]. In an undirected graph G = (V, E), a vertex subset S ⊆ V of
size k is called an s-plex if the minimum degree in G[S] is at least k−s. Hence,
cliques are exactly 1-plexes. First, strengthening a previous NP-hardness re-
sult [1,18,19], we point out that the problem of finding s-plexes is W[1]-hard
with respect to the parameter k; that is, the problem seems as (parameter-
ized) intractable as Maximum Clique is. This motivates the consideration of
isolation as a parameter for s-plex enumeration. We show that we can indeed
apply the isolation scenario for s-plexes by providing a fixed-parameter algo-
rithm with parameter c that enumerates all maximal min-c-isolated s-plexes
for constant s. As a side result, we improve a time bound for a generalized
vertex cover problem first studied by Nishimura et al. [22]. Table 1 gives a
summary of the running times of the enumeration algorithms for combina-
tions of isolation conditions and dense subgraphs that are considered in this
work.

Preliminaries. We only consider undirected graphs G = (V, E) with n :=
|V | and m := |E|. Let N(v) := {u ∈ V | {u, v} ∈ E} and N [v] := N(v)∪ {v}.
For v ∈ V , let deg(v) := |N(v)|. For A, B ⊆ V, A ∩ B = ∅, let E(A, B) :=

4

{{u, v} ∈ E | u ∈ A, v ∈ B}. For a vertex set S ⊆ V , an outgoing edge is
an edge {u, v} ∈ E(S, V \ S), and for a vertex v ∈ S, its outgoing edges are
the outgoing edges of S that are incident on v. For V ′ ⊆ V , let G[V ′] be the
subgraph of G induced by V ′ and G \V ′ := G[V \V ′]. For v ∈ V , let G− v :=
G[V \ {v}]. The complement graph Ḡ = (V, Ē) of a graph G = (V, E) is
defined as the graph with the same set of vertices and complementary edge
set Ē := {{u, v} ⊆ V | {u, v} /∈ E}. A set S with property P is called maximal
if no proper superset of S has property P , and maximum if no other set with
property P has higher cardinality. A clique is a set of vertices S ⊆ V that
induces a complete graph. A vertex cover of a graph G is a set of vertices S ⊆ V
such that every edge in G has at least one of its endpoints in S.

Parameterized complexity [6,8,21] is an approach to finding optimal solutions
for NP-hard problems [10]. The idea is to accept the seemingly inevitable
combinatorial explosion, but to confine it to one aspect of the problem, the
parameter. If for relevant inputs this parameter remains small, then even large
problems can be solved efficiently. More precisely, a problem is fixed-parameter
tractable (FPT) with respect to a parameter k if there is an algorithm solving a
problem instance of size n in f(k) ·nO(1) time for some computable function f .
Analogously to NP-hardness, one can show that a problem is presumably not
fixed-parameter tractable by giving a parameterized reduction from a problem
known to be in the class W[1], thus showing W[1]-hardness. A parameterized
reduction reduces an instance (I, k) of a parameterized problem, where k is
the parameter, in f(k) · |I|O(1) time for an arbitrary computable function f
to an instance (I ′, k′) of another parameterized problem, such that (I, k) is a
yes-instance iff (I ′, k′) is a yes-instance and k′ only depends on k, not on |I|.

2 Enumerating Isolated Cliques

We begin with describing Ito and Iwama’s [14] algorithm for enumerating c-
isolated maximal cliques. Given a graph G = (V, E) and an isolation factor c,
first the vertices are sorted by their degree such that u < v ⇒ deg(u) ≤ deg(v).
The index of a vertex is its position in this sorted order. Let N+[v] := {u ∈
N [v] | u > v} ∪ {v} and N−(v) := {u ∈ N(v) | u < v}.

In a c-isolated clique, the vertex with the lowest index is called the pivot of the
clique. Clearly, a pivot has less than c outgoing edges. Since every c-isolated
clique has a pivot, we can enumerate all c-isolated maximal cliques of a graph
by enumerating for each v ∈ V all c-isolated maximal cliques in G[N+[v]]
(comprising all c-isolated maximal cliques with pivot v) and then removing
those c-isolated cliques that are a subset of a c-isolated clique with another
pivot u ∈ N−(v).

5

The enumeration of c-isolated maximal cliques with pivot v for each v ∈ V is
the central part of the algorithm. We call this the pivot procedure. It comprises
three successive stages.

Trimming stage. In this stage, one builds a candidate set C that is a
superset of all c-isolated cliques with pivot v. The candidate set C is initialized
with N+[v], and then vertices that obviously cannot be part of a c-isolated
clique with pivot v are removed from C. The stage provides the following
invariants for each u ∈ C, which help in upper-bounding the running time of
later stages:

(a) deg(u) < (c + 1) · |C| − 1;
(b) u has fewer than c · |C| outgoing edges;
(c) u has at least |C| − c neighbors in C; and
(d) for any h ≤ |C|, Ch has less than c · (c + 1) · h outgoing edges, where Ch

denotes the set of the h vertices with the h lowest indices in C.

Establishing invariant (a) can be done in O(deg(v)) time. Afterwards all ver-
tices in C have bounded degree, which reduces the time spend during the scans
of the adjacency lists that have to performed to establish invariants (b), (c)
and (d). For details on correctness and analysis we refer to Ito and Iwama [14].

Enumeration stage. In this stage, cliques with pivot v are enumerated.
Let C be the candidate set after the trimming stage, and |N [v] \ C| = d. In
total, we can delete at most c−1 vertices from N [v], since otherwise v obtains
too many outgoing edges. Therefore, c̃ := c − 1 − d is the number of vertices
that we may still remove from C. We can enumerate maximal cliques C ′ ⊆ C
of size at least |C| − c̃ by enumerating minimal vertex covers of size at most c̃
in the complement graph G[C].

Screening stage. In the screening stage, all cliques that are either not c-
isolated or that are c-isolated but not maximal are removed. First, c-isolation
is checked. Then, we check each clique that is left for pivot v against each
clique obtained during calls to pivot(u) with u ∈ N−(v), since these are the
only cliques that can be superset of a clique obtained for pivot v. The overall
running time, in the exponential part dominated by this last step, is then O(4c·
c4 · |E|) [14].

6

(a) (b) (c)

Fig. 2. Example for a maximal clique that is not 4-isolated (a) but has two subsets
that are 4-isolated ((b) and (c)). Solid lines are edges between members of the
clique; dashed lines are outgoing edges.

2.1 Enumerating Maximal c-Isolated Cliques

In this section, we show how the algorithm by Ito and Iwama [14] can be
modified in order to enumerate not only c-isolated maximal cliques but also
maximal c-isolated cliques. Figure 2 shows that a maximal clique that violates
the isolation condition might have several subsets that are c-isolated. The
clique in Figure 2 (a) has four vertices and 16 outgoing edges and is thus
not 4-isolated. However, two subsets ((b) and (c) in Figure 2) are cliques with
three vertices and 11 outgoing edges, and thus are 4-isolated.

Our algorithm follows a two-step approach. First, we enumerate all minimal
vertex covers and thus obtain maximal cliques in the candidate set C. Then,
to also capture c-isolated cliques that are subsets of non-c-isolated cliques
enumerated this way, for each of these cliques, we enumerate all maximal
subsets that fulfill the isolation condition. The problem of finding these c-
isolated subsets of a clique can be stated as follows:

Isolated Clique Subsets

Input: A graph G = (V, E), a clique C ⊆ V and a nonnegative integer c.
Task: Find all maximal sets C ′ ⊆ C that form a c-isolated clique, that is,
a clique with less than c · |C ′| outgoing edges.

The difficulty lies in solving Isolated Clique Subsets with the running
time depending only polynomially on |C|. We will achieve this by showing in
Lemma 3 that only vertices of high index need to be considered for removal.
The following two lemmas are needed for the proof of Lemma 3.

Lemma 1 Let C be a clique of size k. Then, any c-isolated subset C ′ ⊂ C
has size at least k − c + 1.

PROOF. Every vertex in a set C ′ ⊂ C is adjacent to all vertices in C \ C ′.
Hence, if C ′ has less than k − c + 1 members, every vertex is adjacent to c

7

or more vertices outside of C ′ and thus C ′ has more than c · |C ′| outgoing
edges. 2

Lemma 2 Let C be a clique of size k. Then, any maximal c-isolated subset
C ′ ⊂ C of size d contains those vertices that have at most d neighbors in V \C.

PROOF. We show the contraposition: Let C ′ be a c-isolated subset of C of
size d; if there is a vertex v ∈ C \ C ′ that has at most d neighbors in V \ C,
then C ′ is not maximal.

Comparing the number of outgoing edges of C ′ (which are at most cd−1) with
the number of outgoing edges of C ′ ∪ {v}, we can observe that each vertex
in C ′ has one less outgoing neighbor (because v is not “outside” anymore),
and v has at most |C \ C ′| + d = (k − d) + d = k outgoing edges. Therefore,
the number of outgoing edges of C ′ ∪ {v} is at most (cd− 1)− d + k, which is
at most c · (d + 1)− 2 by using the inequality k ≤ d + c − 1 due to Lemma 1.
Thus, C ′ ∪ {v} has less than c · |C ′ ∪ {v}| outgoing edges and is therefore
c-isolated and C ′ consequently is not a maximal c-isolated subset of C. 2

With these two lemmas, we have the prerequisites to show that the vertices
with the k−c+1 lowest indices must belong to any maximal c-isolated subset
of C.

Lemma 3 Let C be a clique of size k. Every maximal c-isolated subset of C
is a superset of Ck−c+1, where Ck−c+1 is the set of vertices with the k − c + 1
lowest indices in C.

PROOF. Let C ′ be a maximal c-isolated subset of C that is not a super-
set of Ck−c+1. We show that C ′ is not c-isolated, leading to a contradiction.
Let c̃ := |C \ C ′| be the number of vertices that were removed from C. All
vertices in C ′ are adjacent to all vertices in C. Hence, there are (k− c̃) · c̃ edges
between C ′ and C. Moreover, consider a vertex u ∈ Ck−c+1 \C ′. Such a vertex
must exist since Ck−c+1 6⊆ C ′. Clearly, there are at least c−1− (c̃−1) = c− c̃
vertices in C ′ that have higher index than u. Since C ′ is a maximal c-isolated
clique, u must have more than k − c̃ neighbors in V \C (as shown by Lemma
2). Hence, each of the c − c̃ vertices in C ′ that have higher index than u has
more than k − c̃ neighbors in V \ C. The number of outgoing edges x(C ′)
from C ′ thus is

x(C ′) > (k − c̃) · c̃ + (c − c̃) · (k − c̃) = c · (k − c̃) = c · |C ′|.

Therefore, C ′ is not c-isolated, thus proving the claim. 2

8

procedure isolated-subset(C, c)
Input: A clique C = {v1, v2, . . . , vk} with vertices sorted by degree

and a nonnegative integer c.
Output: The set C of maximal c-isolated cliques in C.
1: e(C) := (

∑

v∈C deg(v)) − c · |C| + 1
2: D := {∅}, C := ∅
3: repeat c times

4: foreach D ∈ D
5: if C \D is a c-isolated clique then C := C∪{C \D}
6: else

7: if D = ∅ then i := k + 1 else i := minvl∈D{l}
8: D := D ∪ {D ∪ {vj} | k − c < j < i}
9: D := D \ {D}
10: return C

Fig. 3. Algorithm for enumerating maximal c-isolated subsets of a clique C

Lemma 3 provides the basis for an enumeration algorithm for Isolated

Clique Subsets. Mainly, this algorithm generates subsets of C \ Ck−c+1

in order of increasing cardinality and tests whether removal of these subsets
yields a c-isolated subset of C. We ensure that no superset of a set whose
removal yields a c-isolated clique is enumerated and thus we only output max-
imal c-isolated subsets of C.

Theorem 1 Any instance of Isolated Clique Subsets has at most 2c

solutions, and they can be enumerated in O(2c + |C|) time.

PROOF. We describe an algorithm for Isolated Clique Subsets and
bound the number of enumerated subsets. The pseudo code of the algorithm is
shown in Figure 3. It enumerates minimal vertex sets that we need to remove
in order to restore the isolation condition and outputs the maximal cliques
obtained after the removal of these vertices. In line 1, we compute the number
of excessive outgoing edges e(C) from C, that is, the number of outgoing edges
above the threshold allowed by the isolation condition. This is done because
then we can check in constant time in line 5 whether the isolation condition is
fulfilled by keeping and updating the number of excessive outgoing edges for
each deletion candidate set.

In the repeat loop of line 3 we create the candidate deletion sets in order of
increasing cardinality. In the q-th pass of this repeat loop, the set D contains
all deletion candidate sets of size q − 1, except those that are superset of a
deletion set whose removal yields a c-isolated clique.

For each set D ∈ D we test in line 5 whether the deletion of the vertices
in D yields a c-isolated clique. If this is the case, then C \ D is added to

9

the set C of maximal c-isolated cliques and no supersets of D are considered
as deletion candidate sets, because they would yield non-maximal c-isolated
cliques. Otherwise, we insert supersets of D of size |D| + 1, which are then
tested in the next pass of the repeat-loop. By Lemma 3, we must not remove
vertices that belong to C |C|−c+1. Consequently, we only create supersets of D
that contain vertices from C \ C |C|−c+1. We also do not add vertices whose
index is larger than the smallest index of a vertex in D. This makes sure
that no set is generated twice and that we only create supersets of sets whose
removal does not yield a c-isolated clique. Afterwards, we remove D from our
set of candidate sets (line 9).

The computation of excessive outgoing edges can be done in O(|C|) time.
We start with the empty set as only candidate set. The number of excessive
outgoing edges of this candidate set is exactly the number of outgoing edges
from C. Whenever we create a superset D′ = D ∪ {v} of a candidate set D,
the number of excessive outgoing edges from C \ D′, e(C \ D′) = e(C \ D) −
deg(v) + 2 · |C \ D′| + c, can be computed in O(1) time. Thus we need O(1)
time for each enumerated subset. Clearly, at most 2c subsets are enumerated,
since we only consider vertices from C |C|−c+1. Hence, we can enumerate all
c-isolated subsets of a clique C in O(2c + |C|) time. 2

Before actually solving an instance of Isolated Clique Subsets for an
enumerated clique, we make use of the fact that we can transform instances
with isolation factor c in which every vertex has at least xmin outgoing edges
into instances with isolation factor c− xmin. This will help in upper-bounding
the running time of our modified pivot procedure (see Proposition 1).

Lemma 4 Let L = (G, C, c) be an instance of Isolated Clique Subsets

in which every vertex v ∈ C has at least xmin outgoing edges from C. We can
transform L into an equivalent instance L′ with isolation factor set to ĉ :=
c − xmin.

PROOF. Let L′ be a transformed instance of Isolated Clique Subsets

that we obtain after applying the following two transformation rules to L:

(1) For each vertex v ∈ C, set deg(v) := deg(v) − xmin;
(2) set c := c − xmin.

Let C ′ be a subset of C. We show that C ′ is a member of the solution to L
iff it is also a member of the solution to L′. For a problem instance L and
a vertex set C ′, let e(C ′, L) be the number of excessive outgoing edges, that
is, the number of outgoing edges above the threshold defined by the isolation

10

condition. Clearly, the following equivalence holds:

e(C ′, L) =
∑

v∈C′

(deg(v) − (|C ′| − 1)) − c · C ′ + 1

=
∑

v∈C′

(deg(v) − xmin − (|C ′| − 1)) − (c − xmin) · C
′ + 1

= e(C ′, L′).

Since the number of excessive outgoing edges of a vertex set in the original
instance L and in the transformed instance L′ are equal, every vertex set C ′

is a member of the solution to L iff it is a member of the solution to L′. 2

We now describe how to use Theorem 1 to obtain a pivot procedure for enumer-
ating maximal c-isolated cliques. Our modified pivot procedure differs from the
original procedure only in the enumeration stage and in the screening stage,
not in the trimming stage. In the enumeration stage, we first build the com-
plement graph G[C] as in the original pivot procedure. The enumeration of
cliques is divided into two steps: the enumeration of maximal cliques and the
enumeration of maximal subsets that fulfill the isolation condition for each of
those cliques.

In the screening stage, we need not test the enumerated cliques for c-isolation,
since this is already done in the isolated-subset procedure. However, we still
have to filter non-maximal cliques. In the following proposition, we bound the
running time of the modified enumeration algorithm.

Proposition 1 All maximal c-isolated cliques of an m-edge graph G = (V, E)
can be enumerated in O(4c · c3 · m) time.

PROOF. Ito and Iwama [14] showed that the time spent during the trim-
ming stage of all pivot procedures is O(c3 · m). Let Cv be the candidate set
for pivot v after the trimming stage, and let m(Cv) be the number of edges
in G[Cv]. After the trimming stage, there are at most (c − 1) · |Cv| edges
missing from Cv (due to invariant (c)). This means that the construction of
the complement graph G[Cv] can be performed in O(m(Cv) + c · |Cv|) time,
since O(|Cv|

2) = O(m(Cv) + c · |Cv|). After this, we first enumerate maximal
cliques and then enumerate maximal c-isolated subsets of these cliques. The
first enumeration step enumerates at most 2c−1 cliques and can be executed
in O(2c · c2 + m(Cv)) time [5], via the enumeration of minimal vertex covers
in G[Cv]. The running time of the second step depends on the size and number
of vertex covers that were enumerated during the first step. We split the run-
ning time analysis of each call to the isolated-subset procedure (Figure 3) into
the analysis of the time needed for the computation of the number of excessive
outgoing edges (line 1) and the time needed for the enumeration of isolated

11

subsets (lines 3–9). At most 2c−1 vertex covers have been enumerated in the
first step of the enumeration stage, and we spend O(|Cv|) time for the compu-
tation of the number of excessive outgoing edges for each of them. Overall the
computation of excessive outgoing edges thus takes 2c−1 ·O(|Cv|) = O(2c · |Cv|)
time.

The time we spend for the enumeration of maximal subsets depends on the size
of the enumerated vertex covers. Suppose that we have enumerated a vertex
cover of size c̃. Then the resulting clique has size |Cv|− c̃. Since v is the vertex
of minimum degree in that clique and deg(v) ≥ |Cv|, the minimum number
of outgoing edges from each vertex in that clique is at least c̃. According to
Lemma 4, we can transform the instance of Isolated Clique Subsets into
an instance of Isolated Clique Subsets with isolation factor set to c − c̃.
By Theorem 1, the enumeration of maximal subsets in isolated-subsets then
can be performed in O(2c−c̃) time. There are at most 2c̃ minimal vertex covers
of size c̃, so we can enumerate the isolated subsets of all cliques of size |Cv|− c̃
in O(2c̃ · 2c−c̃) = O(2c) time. In total, the enumeration of maximal subsets in
the isolated-subsets procedure takes

c−1
∑

c̃=0

O(2c) = O(2c · c)

time. Note that for the same reason 2c ·c is also an upper bound for the number
of cliques that are enumerated during one execution of the enumeration stage.
Overall, the running time for the enumeration stage in the pivot procedure for
pivot v amounts to

O(m(Cv)+c·|Cv|+2c·c2+m(Cv))+O(2c·|Cv|+2c·c) = O(2c·c2·m(Cv)+c·|Cv|).

Ito and Iwama [14] also showed that
∑

v∈V m(Cv) = O(c3 · m). Further-
more, |Cv| ≤ deg(v) which leads to a total running time of the enumeration
stages of all pivot procedures of

∑

v∈V

O(2c · c2 · m(Cv) + c · deg(v)) = O(2c · c5 · m).

In the screening stage for pivot v, each enumerated clique has to be compared
to the cliques that were enumerated during the enumeration stage for the same
pivot and to the cliques that were enumerated for pivots u ∈ N−(v). Since at
most 2c · c cliques are enumerated during one execution of the enumeration
stage, and |N−(v)| < c (otherwise there is no c-isolated clique with pivot v),
we have to perform at most

O(2c · c · 2c · c) + O(2c · c · 2c · c2) = O(4c · c3)

pairwise comparisons. Since the cliques obtained in the enumeration stage have
size at most deg(v), these comparisons can be performed in O(4c · c3 · deg(v))

12

time. Together with the running times of the trimming and enumeration stages
we can upper-bound the running time of the whole algorithm:

O(c3 · m) + O(2c · c5 · m) +
∑

v∈V

O(4c · c3 · deg(v)) = O(4c · c3 · m). 2

2.2 Improved Screening of Cliques

In addition to having generalized Ito and Iwama’s [14] algorithm, we now
present an improved screening stage. This enables us to improve the exponen-
tial part of the overall running time from O(4c) to O(2.89c). Furthermore, the
modifications facilitate parallelization of the enumeration algorithm.

First, we present a simple and efficient test for checking whether an enumer-
ated clique is subset of a clique with a different pivot. Lemma 5 immediately
follows from the clique and pivot definitions.

Lemma 5 A c-isolated clique C with pivot v is subset of a c-isolated clique C ′

with pivot u 6= v iff u ∈ N−(v) and N(u) ⊇ C.

During the screening stage of the original algorithm [14], we had to compare
every enumerated clique for pivot v with every maximal c-isolated clique with
pivot u ∈ N−(v). According to Lemma 5, we can replace these comparisons
with a simple test that looks for vertices in N−(v) that are adjacent to all
vertices of an enumerated clique. This test takes O(c · |C|) time. This alone
promises a conceivable speedup in practice since the number of set compar-
isons is significantly reduced. Furthermore, since the enumerations of cliques
for different pivots now run completely independent from each other, we can
parallelize our algorithm by executing the pivot procedures for different pivot
vertices on up to n different processors.

Second, we can show that we do not have to perform any brute-force set
comparisons at all. Suppose an enumerated c-isolated clique C with pivot v is
not maximal. Then there must be a vertex set S such that C∪S is a c-isolated
clique. Obviously, S must be a subset of N [v] \ C. Also, S must be a clique
and all vertices in S have to be adjacent to all vertices in C. Let D be the
subset of N [v] \ C that contains exactly the vertices that are adjacent to all
vertices in C. To test the maximality of C, we first enumerate all maximal
cliques D′ ⊆ D. As a consequence, for each such clique D′, the set C ∪ D′ is
a clique. If C ∪ D′ is also c-isolated, then C is clearly not maximal and thus
removed from the output. If C ∪ D′ is not c-isolated however, then we have
to check whether there is a c-isolated subset of C ∪ D′ that is also a superset
of C. This can be done by removing the vertices of highest degree from D′

until either C ∪ D′ becomes c-isolated or D′ is empty. In the first case, C is

13

not a maximal c-isolated clique and is thus removed from the output. In the
second case, C is a maximal c-isolated clique in C∪D′. If this can be shown for
all maximal cliques D′ ∈ D, then C is a maximal c-isolated clique in G. With
this maximality test, we can improve the asymptotic running time bound of
the enumeration algorithm.

Theorem 2 All maximal c-isolated cliques of an m-edge graph can be enu-
merated in O(2.89c · c2 · m) time.

PROOF. Since the trimming stage and enumeration stage of the algorithm
have not changed, their overall running time amounts to

O(c3 · m + 2c · c5m) = O(2c · c5 · m),

as shown in the proof of Proposition 1. In the screening stage of the pivot
procedure, we have to test each clique for maximality. At most 2c−1 · c cliques
are enumerated during the enumeration stage of the pivot procedure for a
pivot v. For any enumerated c-isolated clique C, we have to enumerate all
maximal cliques in a subset of N [v] \ C. Since |N [v] \ C| ≤ c − 1, this enu-
meration can be performed in O(3c/3) time [26]. For each pair of an enumer-
ated c-isolated clique C and a maximal clique D′ we decide whether a subset
of C∪D′ is c-isolated by successively removing the vertices with highest degree
from D′. Clearly, this can be done in O(c) time. Altogether, one execution of
the screening stage thus has a worst-case running time of

O(2c · c) · O(3c/3) · O(c) = O(2.89c · c2).

There are n runs of the screening stage and together with the running times
of the other stages we achieve a total worst-case running time of

O(2c · c5 · m) + O(2.89c · c2 · n) = O(2.89c · c2 · m). 2

Note that since we do not perform any pairwise comparisons anymore, we have
to ensure that no clique is output twice. We can deal with this by choosing
an appropriate data structure, for example a hash table, for output.

3 New Isolation Concepts

Since isolation is not merely a means of developing efficient algorithms for
the enumeration of cliques but also a trait in its own right, it makes sense
to consider varying degrees of isolation. For instance, this is useful for the

14

enumeration of isolated dense subgraphs for the identification of communities,
which play a strong role in the analysis of biological and social networks [23].

The definition of c-isolation is not particularly tailored to these applications
and we propose two alternative isolation concepts. One of them, min-c-isolation,
is a weaker notion than c-isolation and the other, max-c-isolation, is a stronger
notion than c-isolation. For both isolation concepts, we achieve a considerable
speedup in the exponential part of the running time.

3.1 Minimum Isolation

Min-c-isolation is a weaker concept of isolation than the previously defined
c-isolation, since we only demand that a set contains at least one vertex with
less than c outgoing edges.

Definition 2 Let G = (V, E) be a graph. A vertex set S ⊆ V is min-c-isolated
if there is at least one vertex in S with less than c neighbors in V \ S.

Obviously, every c-isolated set is also min-c-isolated (also compare Figure 1).
The enumeration of maximal min-c-isolated cliques consequently yields sets
that are at least as large and often larger than c-isolated cliques.

The algorithm for the enumeration of maximal min-c-isolated cliques is mainly
a simplification of the algorithm from Section 2. By way of contrast to c-
isolated cliques (see Theorem 2), we lose linear-time solvability for constant c;
the running time now becomes O(n · m). We use the same pivot definition
and enumerate cliques for each possible pivot; from our definition of min-c-
isolation it follows directly that the pivot of a min-c-isolated clique must have
less than c neighbors outside of the clique. Subsequently, we point out the
differences in the three main stages of the pivot procedure.

Trimming stage. For pivot v, we again start with C := N+[v] := {u ∈
N [v] | u > v} ∪ {v} as candidate set. In contrast to the trimming stage
for c-isolation, we establish only one invariant for each u ∈ C:

(a) u has at least |C| − c adjacent vertices in C.

The correctness of the invariant is easy to see. A vertex u with less than |C|−c
adjacent vertices in C cannot be in a min-c-isolated clique with pivot v since v
has at least c neighbors outside any clique that contains both v and u.

Since the min-c-isolation concept makes no assumption about vertices other
than the pivot, we cannot remove vertices because of their degree. This results

15

in the loss of the linear running time for constant c.

Enumeration Stage. Let c̃ be the number of vertices that can still be
removed from the candidate set C after the trimming stage. We first build the
complement graph G[C]. Then, we enumerate the minimal vertex covers of
size at most c̃ in G[C]. We ensure that no vertex cover is enumerated twice by
storing them in an appropriate data structure. From each enumerated minimal
vertex cover, we directly obtain a min c-isolated clique. This follows from the
fact that we have removed less than c neighbors of v during the trimming and
enumeration stage. Consequently, v has less than c neighbors outside of the
clique, which exactly fits our definition of min-c-isolation.

Screening Stage. In the screening stage, we remove enumerated cliques
that are not maximal. The maximality of an enumerated min-c-isolated clique C
can be easily tested. We simply check whether there is a vertex that is adja-
cent to all vertices in C. This is sufficient because any maximal min-c-isolated
clique is also a maximal clique: adding a vertex that is adjacent to all vertices
of a min-c-isolated clique always produces a min-c-isolated clique. Further-
more, no vertex that was removed in order to establish invariant (a) or during
the enumeration stage is adjacent to all vertices in C. Hence, we only need to
consider vertices in N [v] \ N+[v] = N−(v). Compared to c-isolation, the fact
that we only have to perform this very simple maximality test results in an
improved exponential part of the running time.

Theorem 3 All maximal min-c-isolated cliques of an n-vertex and m-edge
graph G = (V, E) can be enumerated in O(2c · c · m + n · m) time.

PROOF. The correctness of the presented enumeration algorithm follows
directly from the description of the three stages of the algorithm. We complete
the proof by bounding the running time of the algorithm. We call the pivot
procedure for each vertex v ∈ V . During the pivot procedure for pivot v
we spend O(m) time in the trimming stage, O(m + c · deg(v)) time for the
construction of G[C], and O(2c ·c2) time for the enumeration of minimal vertex
covers. Since at most 2c minimal vertex covers are enumerated, we construct
at most 2c cliques in the enumeration stage. For each of these cliques, we then
check whether there is a vertex in N−(v) that is adjacent to all vertices of the
clique. Note that |N−(v)| < c, since otherwise there is no min-c-isolated with
pivot v. Consequently, we can perform the maximality test in O(c · deg(v))
time for each clique and thus in O(2c · c · deg(v)) time for all enumerated
cliques. In total, the n executions of the pivot procedure have a running time

16

of

∑

v∈V

O(m + c · deg(v) + 2c · c2 + 2c · deg(v)) = O(2c · c · m + n · m). 2

3.2 Maximum Isolation

Compared to c-isolation, max-c-isolation is a stronger notion (see also Figure 1).
In particular, we limit the number of outgoing edges for all vertices of the
clique.

Definition 3 Let G = (V, E) be a graph. A vertex set S ⊆ V is max-c-isolated
if every vertex v ∈ S has less than c neighbors in V \ S.

This isolation concept is useful when we particularly want to exclude high-
degree vertices from the enumerated sets. Compared to the enumeration of
min-c-isolated cliques or c-isolated cliques, this can result in the enumeration
of smaller cliques for equal values of c.

We apply the algorithm scheme presented in Section 2, that is, for every ver-
tex v ∈ V we enumerate all maximal max-c-isolated cliques with pivot v.

Trimming Stage. We compute a candidate set C ⊆ N+[v] by removing
every vertex from N+[v] that cannot be in a max-c-isolated clique with pivot v.
After that, each vertex u ∈ C complies with the following invariants:

(a) deg(u) < |C| + c − 1 and
(b) u has at least |C| − c adjacent vertices in C.

Both invariants can be demanded because every vertex in a max-c-isolated
clique must have less than c neighbors outside of the clique and all cliques
with pivot v are subsets of C. Invariant (a) stems from the observation that
vertices with at least c neighbors outside of C cannot be in a max-c-isolated
clique that is a subset of C. Invariant (b) was also part of the trimming stages
for the enumeration of c-isolated and min-c-isolated cliques. Clearly, if the
invariant was correct for the weaker isolation concepts, then it must be also
correct for the strongest isolation concept.

The purpose of invariant (a) is to remove vertices of high degree without
scanning their adjacency lists. As a result, we can achieve a linear running
time bound for constant c as was also the case for c-isolation.

17

Enumeration Stage. We enumerate max-c-isolated cliques C ′ ⊆ C with
pivot v. As in Section 2, we first enumerate maximal cliques in C via enu-
meration of minimal vertex covers of size at most c̃ in G[C], where c̃ is the
number of vertices that can still be removed from the candidate set C after
having possibly removed vertices in the trimming stage.

The cliques thus obtained may violate the isolation condition, since they may
contain vertices with too many outgoing edges. We can restore the isolation
condition for each enumerated clique by simply removing these vertices. This
is done until either the resulting clique is max-c-isolated or we have removed
more than c̃ vertices. In the latter case we discard the clique. The remaining
enumerated cliques are not necessarily maximal, and therefore non-maximal
cliques must be removed from the output in the screening stage.

Screening Stage. There are two possibilities for an enumerated clique C
to be non-maximal. First, it can be a proper subset of another max-c-isolated
clique with pivot v. Second, it can be a proper subset of a max-c-isolated clique
with pivot u < v. For the first possibility, we test whether there is a set of
vertices D ⊆ N+[v] \C such that C ∪D is a max-c-isolated clique. Clearly, D
has to form a clique and all its vertices have to be adjacent to all vertices in C.
Furthermore, whenever D contains a vertex w with degree |C|+c+x, then |D|
must have size at least x+1. Otherwise, C∪D is not max-c-isolated, because u
has at least c outgoing edges from C ∪D. Hence, we test for all 0 ≤ x < c− 1
whether the set

Dx := {w ∈ N+[v] \ C | C ⊆ N(w) ∧ deg(w) ≤ |C| + c + x}

contains a clique of size at least x+1. If this is not the case for any x, then C is
a maximal max-c-isolated clique for pivot v. Otherwise, C is removed from the
output. Note that since Dx ⊆ N+[v] \C it has size at most c− 1: otherwise C
would not be max-c-isolated.

It remains to check whether C is a proper subset of a clique with another
pivot u < v. This can be tested in the manner described in Section 2.2, since
Lemma 5 also applies to max-c-isolation. The running time of the pivot pro-
cedure is dominated by the first maximality test of the screening stage. For
each of the O(2c) enumerated cliques, we have to solve Maximum Clique up
to c times. Since |Dx| < c for all 0 ≤ x < c − 1, this can be done in O(1.22c)
time [24]. 5 The overall running time of this test is then

O(2c · 1.22c · c) = O(2.44c · c).

5 Note that this algorithm requires exponential space. A simple algorithm that runs
in polynomial space and is only marginally slower was given by Fomin et al. [9].

18

The running time of the whole enumeration can be bounded in a similar way
as in Section 2.1; we omit the details.

Theorem 4 All maximal max-c-isolated cliques of an m-edge graph can be
enumerated in O(2.44c · c · m) time.

4 Isolated s-Plexes

In many applications such as social [25] and biological [4] network analysis,
cliques have been criticized for their overly restrictive nature or modelling
disadvantages. Hence, more relaxed concepts of dense subgraphs such as s-
plexes [25,18] are of interest. An s-plex is a degree-based relaxation of the
clique concept:

Definition 4 Let G = (V, E) be a graph. A subset of vertices S ⊆ V of size k
is called an s-plex if the minimum degree in G[S] is at least k − s.

Cliques are nothing but 1-plexes. The parameterized problem of finding an s-
plex of maximum cardinality can be stated as follows:

Maximum s-Plex

Input: A graph G = (V, E) and nonnegative integers s and k.
Question: Is there an s-plex S ⊆ V of size at least k?

The NP-completeness of Maximum s-Plex follows from a general result on
vertex deletion problems [19], but was also shown by reduction from Max-

imum Clique [1,18]. First, we strengthen the result by the corresponding
parameterized hardness result (Section 4.1). Second, we indicate how to enu-
merate isolated s-plexes (Section 4.2).

4.1 Maximum s-Plex is W[1]-Hard

Since the previous reductions from Maximum Clique [1,18] transform a
clique of size k into an s-plex of size k +(s−1) ·n, they are not parameterized
reductions and thus do not yield any information about the parameterized
complexity of the problem. We present a simple parameterized reduction from
Maximum Clique to Maximum s-Plex for arbitrary s and thus show that
the problem is W[1]-hard with respect to the combined parameter (k, s). In
the following, we describe the transformation of a Maximum Clique instance
into a Maximum s-Plex instance. An example of this transformation is given
in Figure 4. Given an instance (G = (V, E), k) of Clique, we construct a

19

a) b)

c) d)

e)

a

b c

d

e

a1

a1

a1

b1

b1 c1

c1

d1

e1

e1

e1

a2

b2

b2

c2

c2

d2

d2

d2

e2

e2

e2

S1

S1

S1

S2

S2

S2

(c1) (b2)

Fig. 4. Example for the reduction of Maximum Clique to Maximum 2-plex.
a) Original graph G with four cliques of size k = 3. b) Transformed graph G′

consisting of s = 2 compartments. Solid lines represent edges inside compartments,
dashed lines those between two compartments. c) 2-plex of size 6 = s · k with none
of the compartments forming a clique of size k = 3. d) After arbitrarily picking
vertices c1 and b2 the resulting exchange graph has a cycle of length two. e) After
the exchange of the two vertices both compartments form cliques of size k = 3.

graph G′ = (V ′, E ′) in the following way: V ′ is comprised of s · |V | vertices,
with each v ∈ V corresponding to exactly s vertices in V ′:

V ′ :=
s

⋃

i=1

Vi where Vi = {ri : 1 ≤ r ≤ n}.

Each Vi is called a compartment of V ′. Two vertices in the new graph are
adjacent when the vertices they correspond to were adjacent in the original
graph:

E ′ := {{ri, tj} : i, j ≤ s ∧ {r, t} ∈ E}.

In other words, to generate G′, every vertex in G is replaced by s vertices
forming an independent set but otherwise preserving the connection structure.
To show that this is indeed a parameterized reduction, one can prove the
following:

20

Lemma 6 G has a clique of size k iff G′ has an s-plex of size s · k.

PROOF. Clearly, if G has a clique of size k, then G′ has an s-plex of size s·k.
It remains to be shown that if G′ has an s-plex S with |S| = s · k, then G
has a clique of size k. We call two vertices ri and rj , that is, two vertices that
correspond to the same vertex r in the original graph, siblings. Note that two
siblings are nonadjacent and have the same neighborhood: N(ri) = N(rj).
Analogously to the compartments of V ′, the sets Si := Vi ∩ S are called the
compartments of S. When S is an s-plex of size s · k, we can suppose that S
is made up of exactly s compartments each of size exactly k. Otherwise, we
can always remove one vertex ri that belongs to a compartment Si of size
more than k and insert one of its siblings rj into a compartment Sj that
has less than k vertices. This operation does not change the degree of any of
the vertices in S, since two siblings have the same neighborhood. It can also
be repeated as long as there is one compartment of size more than k. As a
consequence, we can assume that S is made up of exactly s compartments of
size exactly k.

We face two cases: none of the compartments of S forms a clique or at least
one does so. Consider the latter case with Si being a compartment of S that
forms a clique: obviously the set C = {r | ri ∈ Si} forms a clique of size k. We
complete the proof by showing that whenever we face the first case, then we
can transform S such that one of its compartments forms a clique of size k.

Since none of the compartments forms a clique of size k, there is at least
one vertex ri in every compartment Si that has less than k − 1 neighbors in
its compartment and exactly k neighbors in at least one other compartment,
because it has to have at least s · k − s = s · (k − 1) neighbors in S.

If we arbitrarily pick a vertex with this property for each compartment, we
can build a directed exchange graph with the compartments as vertices and
a directed edge from compartment Si to compartment Sj when the vertex
picked in Si has k neighbors in Sj. An example of two compartments and the
exchange graph defined by them is shown in Figure 4. The exchange graph has
at least one cycle, because every vertex in it has at least one edge with outgoing
direction. Along this cycle, we can exchange the vertices in the direction of
the edges, meaning that we remove vertex ri from Si and insert its sibling rj

into Sj when Si and Sj belong to the cycle and there is a directed edge from Si

to Sj . Note that rj was not already part of Sj, because ri had k neighbors
in Sj, and Sj has size exactly k.

After executing the exchange for each edge of the cycle, every compartment
holds again k vertices and its average degree has increased, because in each
compartment on the cycle we have removed a vertex with less than k − 1

21

neighbors and inserted a vertex with k neighbors—which means that it has k−
1 neighbors after the removal of some other vertex from the compartment.

This procedure can be repeated as long as none of the compartments forms
a size-k clique, and since it continuously increases the average degree of some
compartments, one of them has to become a clique at some point, meaning
that there also has to be a clique of size k in G. 2

Theorem 5 Maximum s-plex is W[1]-hard with respect to the combined
parameter (s, k).

PROOF. Clearly, the described reduction can be performed in polynomial
time. Furthermore, it is a parameterized reduction, as shown in Lemma 6.
Since Maximum Clique is W[1]-hard [6] with respect to the parameter “so-
lution size”, Maximum s-plex is also W[1]-hard. 2

Theorem 5 proves that there exist no fixed-parameter algorithms for Maxi-

mum s-Plex with respect to the combined parameter (s, k), unless there is a
structural collapse between FPT and the W-hierarchy. This W[1]-hardness re-
sult also holds when we parameterize the problem with either one of s and k.
As a consequence, we need to consider other parameters to efficiently find
maximum s-plexes or to enumerate all maximal s-plexes. This again leads to
considering isolation as a parameter, as we do next.

4.2 Enumeration of Isolated s-Plexes

We present an algorithm for the enumeration of maximal min-c-isolated s-
plexes that runs in FPT time with respect to parameter c for any constant s.
Although it is conceivable that c-isolation or max-c-isolation can be similarly
applied to the enumeration of s-plexes, both of these isolation concepts are
more complicated than min-c-isolation and would hence lead to rather involved
enumeration algorithms. Since it is our aim to show that the parameter of
isolation in general can be applied to s-plex enumeration, we subsequently
focus on the pairing of s-plexes and min-c-isolation.

Compared to the enumeration of maximal min-c-isolated cliques, we face two
obstacles when enumerating maximal min-c-isolated s-plexes.

The first obstacle is that we cannot use the algorithm for the enumeration of
minimal vertex covers, since an s-plex does not necessarily induce an indepen-
dent set in the complement graph. The second obstacle is that an s-plex with

22

a pivot vertex v is not necessarily a subset of N [v]. We begin with describing
how to overcome the first obstacle.

Since in an s-plex S of size k every vertex v ∈ S is adjacent to at least k −
s vertices, the subgraph induced by S in the complement graph G[S] is a
graph with maximum degree at most s − 1. Consider therefore the following
generalization of a vertex cover:

Definition 5 Let G = (V, E) be a graph. We call a subset of vertices S ⊆ V
a bounded-degree-deletion-d set (bdd-d set) if G \ S has maximum degree at
most d.

Clearly, a vertex cover is the same as a bdd-0 set. The idea is to enumerate
maximal s-plexes in G by enumerating minimal bdd-d deletion sets with d :=
s−1 in the complement graph Ḡ. We present a fixed-parameter algorithm for
the enumeration of minimal bdd-d sets that uses the size of the solution sets
as the parameter. The enumeration version of the problem can be stated as
follows:

Bounded-Degree-Deletion

Input: A graph G = (V, E) and nonnegative integers k and d.
Task: Find all minimal bdd-d sets of size at most k of G.

The decision version of Bounded-Degree-Deletion was also considered
by Nishimura et al. [22] who presented an O((d + k)k+3 · k + n(d + k)) time
algorithm. 6 In the following theorem, we improve upon this running time
while also covering the enumeration version. The simple idea is to pick a
vertex v with more than d neighbors, and then to branch into d + 2 cases
corresponding to the deletion of v or the deletion of one vertex of an arbitrary
set of d + 1 neighbors of v:

Theorem 6 Let G be an n-vertex and m-edge graph G and k a nonnegative
integer. There are at most (d + 2)k minimal bdd-d sets of size at most k, and
they can be enumerated in O((d + 2)k · (k + d)2 + n · (k + d)) time.

PROOF. First, we perform a data reduction that simply removes all vertices
with degree greater than k + d. This is correct because every vertex v with
more than k+d neighbors must belong to any bdd-d set. Finding these vertices
can be performed in O(n · (k + d)) time by scanning the adjacency list of each
vertex up to position k + d. Furthermore, since we remove at most k vertices

6 It has been recently shown that the decision version also admits a so-called prob-
lem kernel consisting of at most (d3+4d2+6d+4)·k vertices [7]. Moreover, there are
first experimental results concerning the efficient finding of maximum-cardinality s-
plexes [20].

23

from the graph, this removal can be done in O(n · k) time. Any of the deleted
vertices must be later on added to the enumerated minimal bdd-d sets.

After having performed the data reduction, a search tree procedure enumerates
all minimal bdd-d sets of the graph. The main idea is to choose a vertex v that
has more than d neighbors as long as such a vertex exists, and then branch on
the set Nd+1[v] that contains v and d+1 of its neighbors. Obviously, at least one
of the vertices in Nd+1[v] must belong to any bdd-d set, since otherwise vertex v
would retain more than d neighbors. Consequently, we branch into d+2 cases
and enumerate the minimal bdd-d sets of (G− u, k − 1) for each u ∈ Nd+1[v].
Also, for each branch we keep track of the set of vertices S that has been
deleted so far. The branching is performed as long as k ≥ 0 and a vertex v
with more than d neighbors can be found.

If at a search tree node k < 0, then the set of removed vertices is already too
large and therefore we stop branching. Otherwise, if the graph already has
maximum degree d and k ≥ 0, then the set of removed vertices S is a bdd-d
set. We check whether S is minimal, that is, whether there is no vertex u ∈ S
such that S\{u} is a bdd-d set, and output all minimal S. We add the vertices
that have been removed during the data reduction stage and obtain a minimal
bdd-d set of the input graph.

Based on the above description, it is not hard to prove the claimed running
time bound; we omit the basically straightforward details. 2

The search tree algorithm could possibly output duplications of a solution set.
Again we cope with this by outputting the solutions in an appropriate data
structure. The exponential part of the running time cannot be improved if the
goal is to output all minimal bdd-d sets: the graph that consists of k disjoint
cliques of size d + 2 has exactly (d + 2)k minimal bdd-d sets.

Now we turn to the second obstacle in the enumeration of maximal min-c-
isolated s-plexes. Recall that the second obstacle lies in the fact that given a
pivot vertex v, maximal min-c-isolated s-plexes with pivot v are not necessarily
a subset of N+[v], since they can contain up to s − 1 vertices that are not
adjacent to v. We deal with this by enumerating all maximal min-c-isolated
s-plexes for a given pivot set instead of a single pivot. The pivot set of a min-
c-isolated s-plex is defined as the set that contains the pivot vertex v of the
s-plex and those vertices that belong to the s-plex but are not adjacent to v.
The pivot vertex is defined as the vertex with lowest index among the vertices
with less than c outgoing edges. There has to be at least one such vertex, since
otherwise the condition of min-c-isolation would be violated, but it does not
necessarily have to be the vertex with the lowest index of all vertices in the s-
plex. Consider, for example, a min-1-isolated 3-plex S of size k that contains a

24

procedure pivot-min-isolated-s-plex(G, v, c)
Input: A graph G = (V, E) with vertices sorted by degree, a vertex

v ∈ V and a nonnegative integer c.
Output: The set C of maximal min-c-isolated s-plexes with pivot v.

Trimming stage

1: C := N(v)
2: c̃ := c − 1
3: foreach u ∈ C
4: if |N(u) ∩ C| ≤ |N(v)| − c − s
5: C := C \ {u}; c̃ := c̃ − 1
6: if c̃ < 0 return ∅

Enumeration stage

7: construct G[C]
8: foreach P ∈ {P ′ ⊆ V \ N [v] | |P ′| ≤ s − 1}
9: P := P ∪ {v}

10: construct G[C ∪ P]
11: enumerate all minimal bdd-(s − 1) sets D ⊆ C

of G[C ∪ P] of size at most c̃
12: C := C ∪ {(C ∪ P) \ D | D is obtained in line 11}

Screening stage

13: foreach S ∈ C
14: if ∃u ∈ S : u < v and u has less than c neighbors in V \ S
15: remove S from C
16: foreach S ∈ {S ′ ∈ C | S ′ has pivot set of size at most s − 1}
17: if ∃u ∈ V \ S : {u} ∪ S is an s-plex
18: remove S from C
19: return C

Fig. 5. The pivot procedure for enumerating maximal min-c-isolated s-plexes.

vertex u that has k−3 neighbors in S and one outgoing edge and a vertex v that
has k− 1 neighbors in S and no outgoing edge. Since deg(u) < deg(v), u < v.
However, u cannot be pivot since it has one neighbor in V \ S.

The overall structure of the algorithm remains the same, that is, for each v ∈
V , we enumerate all maximal min-c-isolated s-plexes with pivot v. Below, we
describe the pivot procedure for pivot v. The procedure also consists of the
three stages, and the pseudo code is given in Figure 5.

Trimming stage. We start with C := N(v) as candidate set. In lines 2–5
of Figure 5, we remove vertices from C that have too few neighbors in C. After
this removal, the following invariant holds for all u ∈ C:

(a) u has at least |N(v)| − c − s + 1 neighbors in C.

25

This invariant must be fulfilled since any s-plex S that contains v and a
vertex u with at most |N(v)| − c − s neighbors has size at most |N(v)| − c.
Hence v has at least c neighbors in V \ S and is not the pivot of S.

Enumeration stage. We first build the complement graph G[C] in line 7
of the algorithm. Then, for each possible pivot set P with pivot v, we indepen-
dently enumerate the maximal min-c-isolated s-plexes. This is done by first
extending the complement graph to G[C ∪ P] (line 10) and then enumerating
minimal bdd-(s−1) sets of size at most c−1 in G[C ∪ P] (line 11). Note that
we also explicitly demand that the enumerated bdd-(s−1) sets do not contain
any vertices from P , since we want to enumerate s-plexes with pivot set P .
In other words, we demand that the enumerated bdd-(s− 1) sets are a subset
of C. We can do this by solving an annotated version of Bounded-Degree-

Deletion. From each enumerated bdd-(s−1) set D, we then obtain an s-plex
by removing D from C ∪ P (line 12). Note that the enumerated s-plexes are
min-c-isolated because we have removed less than c vertices from C in the
trimming and enumeration stage.

Screening stage. In the screening stage, we remove enumerated s-plexes
that either have pivot u 6= v or are not maximal. First, we test whether S
contains a vertex u < v, where u has less than c neighbors outside of the
s-plex (lines 13–15). Then S has pivot u and not v, and we remove S from the
output. Next, we test whether there is a vertex u such that S ∪ {u} is an s-
plex (lines 16–18). Then S is not a maximal min-c-isolated s-plex, and hence
it is removed from the output. Note that any enumerated min-c-isolated s-
plex S with pivot set P cannot be subset of a min-c-isolated s-plex S ′ with
pivot set P because we have only enumerated minimal bdd-(s − 1) sets. For
the same reason, S can also not be subset of a min-c-isolated s-plex S ′ with
pivot set P ′ ⊂ P . Hence, S can only be subset of a min-c-isolated s-plex S ′

that has a pivot set P ′ ⊃ P . Therefore, we only need to perform the test on
enumerated s-plexes that have a pivot set of size at most s − 1.

Theorem 7 All maximal min-c-isolated s-plexes of a graph can be enumerated
in O((s + 1)c · (s + c) · ns+1 + n · m) time.

PROOF. The correctness of the algorithm follows from the description above.
We complete the proof by bounding the running time of the algorithm. The
trimming stage of the pivot procedure can be performed in O(m) time, since
each edge is visited a constant number of times. The construction of G[C]
can be performed in O(m + (s + c) · n) time. This is because C contains at
most m edges and at most (s + c) · n non-edges after the trimming stage.
Hence, |C|2 ≤ m + (s + c) · n. Next, we enumerate minimal bdd-(s − 1) sets

26

of size at most c − 1 for all possible pivot sets P for pivot vertex v. For each
pivot set P , we extend the complement graph so that it also contains P . This
can be done in O(s ·n) time, because P contains at most s vertices. According
to Theorem 6, the enumeration of the minimal bdd-(s − 1) sets can be per-
formed in O((s+1)c · (s+ c)2 +n · (s+ c)) time. Furthermore, we can omit the
data reduction of the algorithm for the enumeration of minimal bdd-(s − 1)
sets, since after the trimming stage, every vertex from C has at most s + c
neighbors in G[C]. Therefore, we save the O(n · (s + c)) part of this running
time. As shown by Theorem 6, at most (s + 1)c bdd-d sets are enumerated.
Consequently, the construction of s-plexes for pivot set P in line 12 can be
performed in time O((s + 1)c · n). The enumeration of s-plexes for one pivot
set thus takes

O(s · n + (s + 1)c · (s + c)2 + (s + 1)c · n) = O((s + 1)c · (s + c) · n)

time. During one execution of the pivot procedure, O(ns−1) pivot sets are
created and except for the construction of G[C] one must perform every step
for each pivot set. Hence, the execution of the enumeration stage for one pivot
vertex has a total running time of

O(m + (s + c) · n + ns−1 · ((s + 1)c · (s + c) ·n)) = O((s + 1)c · (s + c) ·ns + m).

In the screening stage, one performs two tests on each enumerated s-plex.
For one s-plex, the first test can be performed in O(n) time when for each
vertex we keep track of how many neighbors it has outside of the s-plex.
Since (s+1)c ·ns−1 s-plexes are enumerated, this test has a total running time
of O((s + 1)c · ns).

For one s-plex, the second test can be performed in O(n2) time. Also note
that it has to be performed only for s-plexes that have pivot sets of size at
most s−1. There are O(ns−2) of these pivot sets and at most (s+1)c s-plexes
have been enumerated for each of these pivot sets. Consequently, this test can
be performed in O((s + 1)c · ns) time. The screening stage thus has a total
running time of O((s+1)c ·ns). In total, one execution of the pivot procedure
has a running time of O((s + 1)c · (s + c) · ns + m). The pivot procedure is
executed n times, once for each vertex v ∈ V . This results in a total running
time of

n · O((s + 1)c · (s + c) · ns + m) = O((s + 1)c · (s + c) · ns+1 + n · m). 2

By Theorem 7, for every constant s, we obtain a fixed-parameter algorithm for
enumerating all maximal min-c-isolated s-plexes with respect to the param-
eter c. Note, however, that the algorithm is not a fixed-parameter algorithm
with respect to the combined parameter (s, c) and that such an algorithm does
not exist because there can be too many maximal min-c-isolated s-plexes in a

27

graph. Consider, for example, a graph that consists of two cliques, a clique C1

of size s− 1 and a clique C2 of size n− s + 1. The union of C1 and any subset
of C2 of size s − 1 is a maximal min-1-isolated s-plex of the graph. Hence,
this graph has at least

(

n
s−1

)

maximal min-1-isolated s-plexes. Therefore, their

enumeration cannot be done in f(s, c) · nO(1) time.

5 Outlook

There are numerous avenues for future research. First, we studied the enu-
meration of s-plexes only with respect to min-c-isolation, leaving open the
cases of c-isolation and max-c-isolation. Especially interesting seems to be the
question whether one can achieve fixed-parameter tractability results with re-
spect to the parameter (s, c) for a combination of s-plexes with one of these
two isolation concepts. Second, it is open to derive a linear-time algorithm
for enumerating all maximal min-c-isolated cliques for constant c. Third, it
is conceivable that we could speed up our enumeration algorithms by using
compact representations for the output maximal cliques, as already proposed
for the enumeration of minimal vertex covers [5]. Fourth, also further clique
relaxations—for example the paraclique concept [4]—might be studied using
the isolation parameter.

Finally, there is new empirical evidence for the usefulness isolated clique enu-
meration in various applications. We have implemented and tested our algo-
rithms based on algorithm engineering methods [12], demonstrating that the
proposed algorithms are fast not only in theory, but also in practice. 7 Further-
more, we showed that in financial networks, isolated cliques have interesting
properties compared to arbitrary maximal cliques [12]. We conclude that the
enumeration of isolated cliques should also be studied in other real-world net-
works.

Acknowledgments We thank an anonymous referee of Theoretical Com-
puter Science for valuable comments that have improved the presentation of
this paper, Hiro Ito and Kazuo Iwama (Kyoto) for making the manuscript of
their journal version [14] available to us, and Jiong Guo (Jena) for the idea
for Theorem 6.

7 The corresponding program is free software and available from
http://theinf1.informatik.uni-jena.de/c-isol/.

28

http://theinf1.informatik.uni-jena.de/c-isol/

References

[1] B. Balasundaram, S. Butenko, I. V. Hicks, and S. Sachdeva. Clique relaxations
in social network analysis: The maximum k-plex problem, 2008. Manuscript.

[2] B. Balasundaram, S. Butenko, and S. Trukhanovzu. Novel approaches
for analyzing biological networks. Journal of Combinatorial Optimization,
10(1):23–39, 2005.

[3] S. Butenko and W. E. Wilhelm. Clique-detection models in computational
biochemistry and genomics. European Journal of Operational Research,
173(1):1–17, 2006.

[4] E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D. Mountz,
N. E. Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly, and R. W.
Williams. Complex trait analysis of gene expression uncovers polygenic and
pleiotropic networks that modulate nervous system function. Nature Genetics,
37(3):233–242, 2005.

[5] P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. Theoretical Computer Science, 351(3):337–350, 2006.

[6] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[7] M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A generalization of
Nemhauser and Trotter’s local optimization theorem. In Proceedings of the
26th International Symposium on Theoretical Aspects of Computer Science
(STACS ’09), Dagstuhl Seminar Proceedings, pages 409–420. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2009.

[8] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[9] F. V. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: a simple
O(20.288n) independent set algorithm. In Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA ’06), pages 18–25. ACM
Press, 2006.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[11] J. H̊astad. Clique is hard to approximate within n1−ǫ. Acta Mathematica,
182(1):105–142, 1999.

[12] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Enumerating
isolated cliques in synthetic and financial networks. In Proceedings of the
2nd Annual International Conference on Combinatorial Optimization and
Applications (COCOA ’08), volume 5165 of LNCS, pages 405–416. Springer,
2008.

29

[13] F. Hüffner, R. Niedermeier, and S. Wernicke. Fixed-parameter algorithms for
graph-modeled data clustering. In S. Butenko, W. A. Chaovalitwongse, and
P. M. Pardalos, editors, Clustering Challenges in Biological Networks. World
Scientific, 2009.

[14] H. Ito and K. Iwama. Enumeration of isolated cliques and pseudo-cliques. ACM
Transactions on Algorithms, 2008. To appear.

[15] H. Ito, K. Iwama, and T. Osumi. Linear-time enumeration of isolated cliques. In
Proceedings of the 13th European Symposium on Algorithms (ESA ’05), volume
3669 of LNCS, pages 119–130. Springer, 2005.

[16] C. Komusiewicz. Various Isolation Concepts for the Enumeration of Dense
Subgraphs. Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität
Jena, Germany, 2007.

[17] C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. Isolation concepts
for enumerating dense subgraphs. In Proceedings of the 13th International
Computing and Combinatorics Conference (COCOON ’07), volume 4598 of
LNCS, pages 140–150. Springer, 2007.

[18] S. Kosub. Local density. In U. Brandes and T. Erlebach, editors, Network
Analysis: Methodological Foundations, volume 3418 of LNCS, chapter 6, pages
112–142. Springer, 2005.

[19] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary
properties is NP-complete. Journal of Computer and System Sciences,
20(2):219–230, 1980.

[20] H. Moser, R. Niedermeier, and M. Sorge. Algorithms and experiments for clique
relaxations—finding maximum s-plexes. Manuscript, submitted for publication,
February 2009.

[21] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[22] N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter tractable
algorithms for nontrivial generalizations of vertex cover. Discrete Applied
Mathematics, 152(1–3):229–245, 2005.

[23] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435(7043):814–818, 2005.

[24] J. M. Robson. Algorithms for maximum independent sets. Journal of
Algorithms, 7(3):425–440, 1986.

[25] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique
concept. Journal of Mathematical Sociology, 6(1):139–154, 1978.

[26] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity
for generating all maximal cliques and computational experiments. Theoretical
Computer Science, 363(1):28–42, 2006.

30

	Introduction
	Enumerating Isolated Cliques
	Enumerating Maximal c-Isolated Cliques
	Improved Screening of Cliques

	New Isolation Concepts
	Minimum Isolation
	Maximum Isolation

	Isolated s-Plexes
	Maximum s-Plex is W[1]-Hard
	Enumeration of Isolated s-Plexes

	Outlook
	References

