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Abstract

The Nemhauser-Trotter local optimization theorem applies to the NP-hard Vertex Cover prob-
lem and has applications in approximation as well as parameterized algorithmics. We general-
ize Nemhauser and Trotter’s result to vertex deletion problems, introducing a novel algorithmic
strategy based on purely combinatorial arguments (not referring to linear programming as the
Nemhauser-Trotter result originally did). The essence of our strategy can be understood as a
doubly iterative process of cutting away “easy parts” of the input instance, finally leaving a “hard
core” whose size is (almost) linearly related to the cardinality of the solution set.

We exhibit our approach using a generalization of Vertex Cover, called Bounded-Degree
Vertex Deletion. For some fixed d ≥ 0, Bounded-Degree Vertex Deletion asks to delete
at most k vertices from a graph in order to transform it into a graph with maximum vertex degree at
most d. Vertex Cover is the special case of d = 0. Our generalization of the Nemhauser-Trotter
theorem implies that Bounded-Degree Vertex Deletion, parameterized by k, admits an O(k)-
vertex problem kernel for d ≤ 1 and, for any ǫ > 0, an O(k1+ǫ)-vertex problem kernel for d ≥ 2.
Finally, we provide a W[2]-completeness result for Bounded-Degree Vertex Deletion in case
of unbounded d-values.
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1. Introduction

Nemhauser and Trotter [36] proved a famous theorem in combinatorial optimization. In terms
of the NP-hard Vertex Cover problem in graphs, where the task is to find a minimum-cardinality
subset of vertices such that each edge has at least one endpoint in this subset, it can be formulated
as follows:

NT-Theorem [36, 5]. For an undirected graph G = (V,E), one can compute in polynomial time
two disjoint vertex subsets A and B such that the following three properties hold:

1. If S′ is a vertex cover of the induced subgraph G[V \ (A ∪B)], then A ∪ S′ is a vertex cover
of G.

2. There is a minimum-cardinality vertex cover S of G with A ⊆ S.
3. For every vertex cover S′′ of the induced subgraph G[V \ (A ∪B)],

|S′′| ≥
|V \ (A ∪B)|

2
.

In other words, the NT-Theorem provides a polynomial-time data reduction for Vertex
Cover. That is, for vertices in A it can already be decided in polynomial time to put them
into the solution set and vertices in B can be ignored when finding a solution. Hochbaum [26] first
explained that the NT-Theorem is very useful for approximating Vertex Cover. The point is
that the search for an approximate solution can be restricted to the induced subgraph G[V \(A∪B)].
The NT-Theorem directly delivers a factor-2 approximation for Vertex Cover by choosing V \B
as the vertex cover. Chen et al. [10] first observed that the NT-Theorem directly yields a 2k-vertex
problem kernel for Vertex Cover, where the parameter k denotes the size of the solution set.
Indeed, this is in a sense an “ultimate” kernelization result in parameterized complexity analy-
sis [20, 23, 37] because there is good reason to believe that there is a matching lower bound of
2k vertices for the kernel assuming the unique games conjecture [28]. Moreover, Dell and van
Melkebeek [17] recently showed that Vertex Cover has no O(k2−ǫ)-edge kernel for ǫ > 0 unless
the polynomial hierarchy collapses to the third level. This also generalizes to Bounded-Degree
Vertex Deletion.

Since its publication numerous authors have referred to the importance of the NT-Theorem from
the viewpoint of polynomial-time approximation algorithms (see, e.g., [5, 27, 29]) as well as from the
viewpoint of parameterized algorithmics (e.g., [2, 10, 13, 24]). The relevance of the NT-Theorem
comes from both its practical usefulness in solving Vertex Cover [1] as well as its theoretical
depth having led to numerous further studies and follow-up work [2, 5, 6, 13]. In this work, our
main contribution is to provide a more general version of the NT-Theorem. The corresponding
algorithmic strategies and proof techniques, however, are not achieved by a generalization of known
proofs of the NT-Theorem but are based on extremal combinatorial arguments. Our main result
is to prove a generalization of the NT-Theorem that helps in finding a minimum-cardinality set
of vertices whose deletion leaves a graph of maximum degree d for arbitrary but fixed d. Clearly,
d = 0 is the special case of Vertex Cover.

Motivation. As the NP-hard Bounded-Degree Vertex Deletion problem—given a graph and
two positive integers k and d, find at most k vertices whose deletion leaves a graph of maximum
vertex degree d—stands in the center of our considerations, some more explanations about its
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relevance follow. Bounded-Degree Vertex Deletion (or its dual problem) already appears in
some theoretical work [8, 9, 15, 30, 38, 39], but so far it has received considerably less attention
than Vertex Cover, one of the best studied problems in combinatorial optimization [29]. To
advocate and justify more research on Bounded-Degree Vertex Deletion (also see [34] for a
more thorough discussion), we describe an application in computational biology. In the analysis
of genetic networks based on micro-array data, recently a clique-centric approach has shown great
success [4, 12]. Roughly speaking, finding cliques (that is, fully connected subgraphs) or near-
cliques (called paracliques [12]) has been a central tool. Since finding cliques is computationally
hard (also with respect to approximation), Chesler et al. [12, page 241] state that “cliques are
identified through a transformation to the complementary dual Vertex Cover problem and
the use of highly parallel algorithms based on the notion of fixed-parameter tractability.” More
specifically, in these Vertex Cover-based algorithms polynomial-time data reduction (such as the
NT-Theorem) plays a decisive role [31] (also see [2]) for efficient solvability of the given real-world
data. However, since biological and other real-world data typically contain errors, the demand for
finding cliques (that is, fully connected subgraphs) often seems overly restrictive and somewhat
relaxed notations of cliques are more appropriate. Chesler et al. [12] introduced paracliques, which
are achieved by greedily extending the found cliques by vertices that are connected to almost all
(para)clique vertices. An elegant mathematical concept of “relaxed cliques” is that of s-plexes
where one demands that each s-plex vertex does not need to be connected to all other vertices in
the s-plex but to all but s − 1. Thus, cliques are 1-plexes. The s-plex concept was introduced
in 1978 by Seidman and Foster [41] in the context of social network analysis. Recently, this concept
has received considerable attention in various fields, see, e.g., [3, 16, 25, 33, 35]. The corresponding
problem to find maximum-cardinality s-plexes in a graph is basically as computationally hard
as clique detection is [3, 16, 30]. However, as Vertex Cover is the dual problem for clique
detection, Bounded-Degree Vertex Deletion is the dual problem for s-plex detection: An
n-vertex graph has an s-plex of size k if and only if its complement graph has a solution set for
Bounded-Degree Vertex Deletion with d = s− 1 of size n− k, and the solution sets can be
directly computed from each other.

Our Results. A bdd-d-set for a graph G = (V,E) is a vertex subset whose removal from G yields a
graph in which each vertex has degree at most d. Our main theorem can be formulated as follows.

Theorem 1 (BDD-DR-Theorem). For an undirected graph G = (V,E), |V | = n, |E| = m and
for any constant ǫ > 0, one can compute in O(n4 ·m) time two disjoint vertex subsets A and B such
that the following three properties hold (the first two properties are referred as the local optimality
conditions in the following and the third one is called the size condition):

1. If S′ is a bdd-d-set of the induced subgraph G[V \ (A ∪B)], then A ∪ S′ is a bdd-d-set of G.
2. There is a minimum-cardinality bdd-d-set S of G with A ⊆ S.
3. For every bdd-d-set S′′ of the induced subgraph G[V \ (A ∪B)], for d ≤ 1,

|S′′| ≥
|V \ (A ∪B)|

d3 + 4d2 + 6d + 4

and for d ≥ 2,

|S′′|1+ǫ ≥
|V \ (A ∪B)|

c
3
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for some constant c depending on d and ǫ.4

As a direct application of Theorem 1 we obtain a problem kernel (by simply removing A ∪ B
from the graph and setting k := k − |A|):

Corollary 1. For d ≤ 1, Bounded-Degree Vertex Deletion admits a problem kernel of at
most (d3+4d2+6d+4)·k vertices, and for constant d ≥ 2, Bounded-Degree Vertex Deletion
admits a problem kernel of O(k1+ǫ) vertices for any constant ǫ > 0. Both problem kernels can be
computed in O(n4 ·m) time.

There is a significant difference between Theorem 1 and the NT-theorem for Vertex Cover:
for d ≥ 2, with our approach we can only get arbitrarily close to a linear dependence of the minimum
solution size on the number of vertices in |V \ (A ∪ B)|. In terms of parameterized algorithmics,
this yields a linear problem kernel for Bounded-Degree Vertex Deletion for d ≤ 1, and an
almost linear problem kernel for d ≥ 2, that is, we can show that there exists a problem kernel
of O(k1+ǫ) vertices for any constant ǫ > 0. Very recently, Chen et al. [11] presented a 37k-vertex
problem kernel for Bounded-Degree Vertex Deletion in the special case of d = 2. Our
general result specializes to a 4k-vertex problem kernel for Vertex Cover (the NT-Theorem
provides a 2k problem kernel), but applies to a larger class of problems. For instance, a slightly
modified version of the BDD-DR-Theorem (with essentially the same proof) yields a 15k problem
kernel for the problem of packing at least k vertex-disjoint length-2 paths of an input graph, giving
the same bound as shown in work focussing on this problem [40].5 We emphasize that our data
reduction technique is based on extremal combinatorial arguments; the resulting combinatorial
kernelization algorithm has practical potential [35]. Note that for d = 0 our algorithm computes
the same type of structure as in the “crown decomposition” kernelization for Vertex Cover
(see, for example, [1, 2]). However, for d ≥ 1 the structure returned by our algorithm is much
more complicated; in particular, unlike Vertex Cover crown decompositions, in the BDD-DR-
Theorem the set A is not necessarily a separator and the set B does not necessarily form an
independent set.

Exploring the borders of parameterized tractability of Bounded-Degree Vertex Deletion
for arbitrary values of the degree value d, we also show in Section 4 that the problem becomes W[2]-
complete with respect to the parameter solution size (that is, the number of vertices to delete) for d
being unbounded. In other words, there is no hope for fixed-parameter tractability with respect to
the parameter k in the case of unbounded d-values.

2. Preliminaries

In this paper, all graphs are simple and undirected. The central problem of this paper is defined
as follows.

Bounded-Degree Vertex Deletion
Input: An undirected graph G = (V,E), and integers d ≥ 0 and k ≥ 0.
Question: Does there exist a bdd-d-set S ⊆ V of size at most k for G?

4In the conference version [22] of this work, we erroneously claimed |S′′| ≥ |V \ (A ∪ B)|/c for some constant c
for every d ≥ 0.

5Recently, Wang et al. [42] improved the 15k-bound to a 7k-bound. Our kernelization based on the BDD-DR-
Theorem method can be adapted to also deliver the 7k-bound.
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In this paper, for a graph G = (V,E) and a vertex set S ⊆ V , let G[S] be the subgraph of G
induced by S and G− S := G[V \ S]. The open neighborhood of a vertex v or a vertex set S ⊆ V
in a graph G = (V,E) is denoted as NG(v) := {u ∈ V | {u, v} ∈ E} and NG(S) :=

⋃

v∈S NG(v)\S,
respectively. The closed neighborhood is denoted as NG[v] := NG(v)∪{v} and NG[S] := NG(S)∪S.
We write V (G) and E(G) to denote the vertex and edge set of G, respectively. For s ≥ 1, the
graph K1,s := ({u, v1, . . . , vs}, {{u, v1}, . . . , {u, vs}}) is an s-star, or simply star. The vertex u is
the center of the star and the vertices v1, . . . , vs are the leaves of the star. A ≤s-star is an s′-star
with s′ ≤ s and a <s-star is an s′-star with s′ < s. A packing P of a graph G is a set of pairwise
vertex-disjoint subgraphs of G. A graph has maximum degree d when every vertex in the graph
has degree at most d. A graph property is called hereditary if every induced subgraph of a graph
with this property has the property as well.

Parameterized algorithmics [20, 23, 37] is an approach to finding optimal solutions for NP-hard
problems. The idea is to accept the seemingly inevitable combinatorial explosion, but to confine it
to one aspect of the problem, the parameter. More precisely, a problem is fixed-parameter tractable
(FPT) with respect to a parameter k if there is an algorithm solving any problem instance of
size n in f(k) · nO(1) time for some computable function f . A common method in parameterized
algorithmics is to provide polynomial-time executable data reduction rules that lead to a problem
kernel [7, 24]. Given a parameterized problem instance (I, k), a data reduction rule replaces (I, k)
by an instance (I ′, k′) in polynomial time such that |I ′| ≤ |I|, k′ ≤ k, and (I, k) is a yes-instance
if and only if (I ′, k′) is a yes-instance. A parameterized problem is said to have a problem kernel,
or, equivalently, kernelization, if, after the exhaustive application of the data reduction rules, the
resulting reduced instance has size g(k) for a function g depending only on k. Roughly speaking,
the kernel size g(k) plays a similar role in the subject of problem kernelization as the approximation
factor plays for approximation algorithms. Analogously to classical complexity theory, Downey and
Fellows [20] developed a framework providing reducibility and completeness notions. A parameter-
ized reduction reduces a problem instance (I, k) in f(k) · nO(1) time to an instance (I ′, k′) (with k′

depending only on k) such that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. The
first two levels of (presumable) parameterized intractability are W[1] and W[2]. We show a W[2]-
completeness result for Bounded-Degree Vertex Deletion with unbounded d; it is commonly
believed that W[2]-complete problems are not fixed-parameter tractable.

3. A Local Optimization Algorithm

In this section, we prove Theorem 1. Recall that the first two properties of Theorem 1 are
called the local optimality conditions, since they guarantee that we can “locally” decide to take all
vertices in A into an optimal solution set and vertices in B can be ignored when finding a solution.
The third property of Theorem 1 is the size condition.

We begin to describe the main algorithm that computes two sets A and B as claimed in
Theorem 1.

3.1. The Main Algorithm

The first step to prove Theorem 1 is to greedily compute a factor-(d + 2) approximate bdd-d-
set X for G. To this end, we use the following easy-to-verify forbidden subgraph characterization of
bounded-degree graphs: A graph G has maximum degree d if and only if there is no (d+1)-star (a
star with d+1 leaves) that is a subgraph of G. With a straightforward greedy algorithm, compute
a maximal (d + 1)-star packing of G, that is, a set of vertex-disjoint (d + 1)-stars that cannot be
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extended by adding another (d + 1)-star. Let X be the set of vertices of this star packing. Since
the number of stars in the packing is a lower bound for the size of a minimum bdd-d-set, X is
a factor-(d + 2) approximate bdd-d-set. Greedily remove vertices from X such that X is still a
bdd-d-set, and finally set Y := V \X. These two vertex sets X and Y are the starting point for
the search for the two vertex subsets A and B that fulfill the properties in Theorem 1; as we will
see, we can restrict A to be a subset of X and B to be a subset of Y .

Since X is a factor-(d+2) approximate bdd-d-set, every bdd-d-set S′′ contains at least |X|/(d+2)
vertices, that is, |S′′| ≥ |X|/(d+2). Thus, |X| ≤ |S′′|·(d+2). Roughly speaking, this shows that the
size condition (third property) of Theorem 1 is fulfilled by choosing A := ∅ and B := Y = V \X.
However, this choice of A and B will in general not guarantee that the first two properties of
Theorem 1 are fulfilled. To fulfill the first two properties, only a subset of Y can be chosen to be
contained in B, but this subset should be as large as possible in order to fulfill the size condition,
that is, one has to bound the size of Y \B with respect to |X|. The most important lemma, whose
proof is deferred to the next subsections, shows that if Y = V \X is too big compared to X, then
one can find two vertex sets A′ ⊆ X and B′ ⊆ Y that fulfill the local optimality conditions such
that B′ is not empty.

Lemma 1. Let G = (V,E) be an undirected graph with a bdd-d-set X and let n := |V | and m :=
|E|. If Y = V \ X contains more than (d + 1)2 · |X| vertices for d ≤ 1 or more than O(|X|1+ǫ)
vertices for d ≥ 2, then one can find in O(n3m) time two vertex subsets A′ ⊆ X and B′ ⊆ Y such
that the following three properties hold:

1. If S′ is a bdd-d-set of the induced subgraph G− (A′ ∪B′), then A′ ∪ S′ is a bdd-d-set of G.

2. There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

3. The subset B′ is not empty.

Note that the first two properties, that is, the local optimality conditions, are the same as the
first two properties in Theorem 1. As the third property in Theorem 1, we also call the third
property in Lemma 1 the size condition. The reason is as follows. The main algorithm iteratively
applies the algorithm behind Lemma 1 and removes A′ and B′ from G and recomputes X, until the
preconditions of Lemma 1 are not fulfilled anymore. The union of all A′’s and B′’s, respectively,
then forms the sets A and B with the properties that are stated in Theorem 1. Since B′ is never
empty, we have a guarantee that B “grows bigger” in each iteration, which will eventually bound
the size of Y \B, and this bound will almost directly imply the size condition of Theorem 1.

In the following, we show the correctness of this approach. Let FindExtremal6 be an algo-
rithm that finds two subsets A′ and B′ as stated in Lemma 1. Figure 1 shows the pseudo-code of
the main algorithm that will be used to show Theorem 1. The algorithm starts initializing A and B
with empty sets in line 1, and then it computes a factor-(d + 2) approximate bdd-d-set X in line 2
and the remaining vertices Y in line 3. If the set Y is small compared to X (conditions in line 5
or line 7), then (A,B) is returned. If the set Y is too big compared to X (that is, the conditions
in line 5 or line 7 are not fulfilled), then, in line 8, the graph G and the vertex set X are passed
to the procedure FindExtremal, which computes two sets A′ and B′ satisfying the properties

6The name “FindExtremal” comes from extremal combinatorics arguments that we use in the proof. Such
arguments are often used for parameterized algorithms and problem kernelization, see, e.g., [21].
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Algorithm: ComputeAB (G)
Input: An undirected graph G = (V,E).
Output: Vertex subsets A and B satisfying the three properties of Theorem 1.

1 A← ∅, B ← ∅
2 Compute a (d + 2)-factor approximate bdd-d-set X for G.

3 Y ← V \X
4 if d ≤ 1 then
5 if |Y | ≤ (d + 1)2 · |X| then return (A,B)
6 if d ≥ 2 then
7 if |Y | ≤ c′ · |X|1+ǫ then return (A,B)
8 (A′, B′)← FindExtremal (G,X).
9 G← G− (A′ ∪B′)

10 A← A ∪A′

11 B ← B ∪B′;
12 goto line 2

Figure 1: Pseudo-code of the main algorithm for computing A and B. The exact value of the
constant c′, which is depending on d and ǫ, is determined later in the proof of Proposition 4. The
pseudo-code of FindExtremal is given in Figure 5.

in Lemma 1. The sets A′ and B′ are then added to A and B in lines 10 and 11, respectively.
Finally, in line 12 the algorithm starts over and computes a factor-(d + 2) approximate solution
for the new graph G in line 2. Since B′ is never empty due to Lemma 1, the conditions in line 5
or line 7 will eventually be fulfilled (because in each iteration at least one vertex is added to B,
thus eventually Y \B will be “small”), and the algorithm returns the vertex subsets A and B. It
remains to show that A and B fulfill the three properties of Theorem 1, and that the running time
of ComputeAB is O(n4 ·m).

Lemma 2. The sets A and B computed by ComputeAB fulfill the three properties given in The-
orem 1.

Proof. First, we prove that A and B fulfill the first two properties of Theorem 1. The proof is
by a simple inductive argument: assume that in some iteration of ComputeAB the two vertex
subsets A and B of a graph G fulfill the first two properties (local optimality conditions) of
Theorem 1 with respect to G (call this assumption a), and that FindExtremal returns in line 8
two vertex subsets A′ and B′ of G′ := G − (A ∪ B) that fulfill the first two properties (local
optimality conditions) of Lemma 1 with respect to the graph G′ (call this assumption b). We show
that then A∪A′ and B ∪B′ fulfill the first two properties of Theorem 1 with respect to G as well:

1. If S′ is a bdd-d-set of the induced subgraph G′−(A′∪B′) = G−(A∪A′∪B∪B′), then A′∪S′

is a bdd-d-set of G′ (due to assumption b), and therefore A∪A′ ∪S′ is a bdd-d-set of G (due
to assumption a). This shows the first property.

2. There is a minimum-cardinality bdd-d-set S of G with A ⊆ S (due to assumption a). Since the
graph property “bounded degree d” is hereditary, S\(A∪B) is a bdd-d-set for G′ = G−(A∪B).

7
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There is a minimum-cardinality bdd-d-set S′ of G′ with A′ ⊆ S′ (due to assumption b).
Since S′ has minimum cardinality, |S′| ≤ |S \ (A ∪ B)|. The set S′ ∪ A is a bdd-d-set of G
(due to assumption a), and because A ⊆ S we know that |S′∪A| ≤ |S|. Since S has minimum
cardinality, S′ ∪A has minimum-cardinality, and thus S′ ∪A is a minimum-cardinality bdd-
d-set that contains A′ ∪A. This shows the second property.

The sets A = ∅ and B = ∅ (line 1) trivially fulfill the first two properties of Theorem 1, and by
the above inductive argument the sets A and B returned by ComputeAB fulfill these properties
as well.

It remains to show that the sets A and B fulfill the third property.

3. Let V ′ := V \ (A ∪B). Clearly V ′ = X ∪ Y (line 3). Since the condition in line 5 (for d ≤ 1)
or line 7 (for d ≥ 2) is true, we know that either |Y | ≤ (d + 1)2 · |X| and therefore

|V ′| = |X| + |Y | ≤ (1 + (d + 1)2) · |X| (for d ≤ 1), or

|Y | = O(|X|1+ǫ) and therefore

|V ′| = |X|+ |Y | = O(|X|1+ǫ) (for d ≥ 2).

Recall that X is a factor-(d + 2) approximate bdd-d-set for G′ := G − (A ∪ B). Thus,
|X| ≤ (d + 2) · |S| for an arbitrary bdd-d-set S.

For d ≤ 1, one obtains |V ′| ≤ (1 + (d + 1)2) · |X| ≤ (1 + (d + 1)2)(d + 2) · |S| and therefore

|S| ≥
|V ′|

(1 + (d + 1)2)(d + 2)
=

|V ′|

d3 + 4d2 + 6d + 4
.

For d ≥ 2, one obtains |V ′| = O(|X|1+ǫ) = O(|S|1+ǫ) and therefore

|S|1+ǫ ≥
|V ′|

c

for some constant c. This shows the third property. �

Next, we show the running time of ComputeAB.

Lemma 3. Algorithm ComputeAB runs in O(n4 ·m) time.

Proof. With the described simple greedy approach, computing a factor-(d + 2) approximate
solution in line 2 takes O(n+m) time. Each call of FindExtremal in line 8 takes O(n3 ·m) time.
FindExtremal always returns two sets A′ and B′ such that B′ is not empty (Lemma 1), hence
after at most n iterations of ComputeAB, Y must be small compared to X and ComputeAB
returns in line 5 (for d ≤ 1) or line 7 (for d ≥ 2). Thus, in total, we find the sets A and B
in O(n4 ·m) time. �

With Lemmas 2 and 3, the proof of Theorem 1 is completed.
The remaining part of this section is dedicated to the proof of Lemma 1 by providing a descrip-

tion of the algorithm FindExtremal. The description is divided into an outline (Subsection 3.2),
the description of a method to show the local optimization conditions (Subsection 3.3), the de-
scription of an important subroutine (Subsection 3.4), and finally a description of FindExtremal
together with the correctness proofs (Subsection 3.5).
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Y

X

(a) Each vertex in X is the center of a
star with four leaves in Y .

Y

X A′ := CX

B′ := C

(b) Each vertex in A′ is the center of a
star with four leaves in B′ ⊆ Y . The
dashed lines illustrate that there are no
edges between B′ and the rest of the
graph in G − A′.

Figure 2: Some simple cases for FindExtremal, assuming d = 3.

3.2. The Ingredients of FindExtremal

We prove Lemma 1 by describing an algorithm called FindExtremal that, given an undirected
graph G and a bdd-d-set X such that Y := V \X is “large” compared to X, finds two subsets A′ ⊆ X
and B′ ⊆ Y such that they fulfill the local optimality conditions and such that B′ is not empty
(see Lemma 1). We first focus on the local optimality conditions:

1. If S′ is a bdd-d-set of the induced subgraph G− (A′ ∪B′), then A′ ∪ S′ is a bdd-d-set of G.

2. There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

Informally speaking, these two properties guarantee that one can always assume that there exists
a minimum-cardinality bdd-d-set that contains all vertices in A′ and no vertex in B′. We use
this informal interpretation for the following step-by-step explanation of the main obstacles that
FindExtremal has to bypass.

How to Fulfill the Local Optimality Conditions. The fundamental idea to show the local optimality
conditions is to use the forbidden subgraph characterization of bounded-degree graphs: a graph G
has maximum degree d if and only if there is no (d + 1)-star (a star with d + 1 leaves) that is a
subgraph of G. To illustrate the idea, let us first assume that there is a packing of vertex-disjoint
(d + 1)-stars in G such that each vertex in the bdd-d-set X is the center of such a star (thus, all
leaves are in Y ). Hence, each vertex in X is “covered” by the star packing. See Figure 2a for an
example. Then, due to the forbidden subgraph characterization, a minimum-cardinality bdd-d-set
has to contain at least one vertex of each star, thus a minimum-cardinality bdd-d-set contains
at least |X| vertices, and X (that is, the set of all centers) is therefore a minimum-cardinality
bdd-d-set of G. Thus, for A′ := X and B′ := Y there exists a minimum-cardinality bdd-d-set that
contains all vertices in A′ and no vertex in B′.

Obviously, in general there might not exist a vertex-disjoint packing of (d + 1)-stars whose
centers cover all vertices in X; rather, it can happen that one is only able to find a subset CX of X
whose vertices are centers of (d + 1)-stars with leaves in Y . Now suppose that the subset CX ⊆ X
is a separator in G such that the leaves of these (d + 1)-stars are contained in a component C
that is “separated” from the rest of the graph, that is, every path from C to a vertex neither
in C nor in CX passes through CX . See Figure 2b for an example. Then, due to the forbidden
subgraph characterization, a minimum-cardinality bdd-d-set has to contain at least one vertex for
each (d+1)-star with center in CX , and taking all vertices in CX into a solution is always optimal,
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Y

X A
′

Y \N(X)

N(X \ A′) \X N(X)

X \ A′

B′

Figure 3: Illustration of the structure of the graph with bdd-d-set X (assuming d = 3), its neigh-
borhood N(X), and all remaining vertices Y \N(X). The sets A′ and B′ fulfill the A′-star cover
property and the restricted neighborhood properties, because there is a (d + 1)-star with center
in A′ and four leaves in B′ for each vertex in A′ and there are no edges between B′ and X \A′ and
no edges between B′ and N(X \A′) \X (illustrated by dashed lines).

since each vertex in C has degree at most d in G−CX . Thus, for A′ := CX and B′ := V (C) there
exists a minimum-cardinality bdd-d-set that contains all vertices in A′ and no vertex in B′. If CX

is not a separator as described, then this approach does not work directly; however, as we will see,
it is not necessary that A′ is a separator that completely separates B′ from the rest of the graph;
A′ and B′ only have to fulfill the following three properties:

A′-star cover property: There exists a packing of vertex-disjoint stars in G[A′ ∪ B′], each star
having at least d + 1 leaves, such that each vertex in A′ is the center of such a star.

Restricted X-neighborhood property: There are no edges between B′ and X \A′.

Restricted Y -neighborhood property: There are no edges between B′ and N(X \ A′) \X.

See Figure 3 for an illustration. Note the difference from the case illustrated in Figure 2b: with
these three properties, the set A′ is not necessarily a separator. Intuitively, the A′-star cover
property is needed to prove that there exists an optimal bdd-d-set containing A′, the restricted
X-neighborhood property is needed to avoid that a vertex in B′ has degree more than d in G−A′,
and the restricted Y -neighborhood property is needed to avoid that a neighbor of a vertex in B′

has degree more than d in G−A′ (because, since X is a bdd-d-set of G, the only vertices of degree
more than d in G−A′ can be in X \A′ or in N(X \A′) \X). Roughly speaking, then, similarly to
the ideas outlined above, it is always optimal to take all vertices in A′ into the solution, and the
vertices in B′ do not have to be considered for an optimal solution, since they and their neighbors
have degree at most d in G−A′; the formal correctness proof is given in Subsection 3.3. With the
A′-star cover property and the restricted neighborhood properties we are now ready to sketch how
FindExtremal works.

FindExtremal in a Nutshell. The algorithm FindExtremal guarantees the A′-star cover property
and the restricted X-neighborhood property as follows. FindExtremal computes a packing of
(d + 1)-stars between X and Y such that the centers CX of the stars are in X and the leaves in Y ,
and such that the leaves of the stars are not adjacent to vertices in X \CX . This is accomplished by
a procedure called StarPacking based on maximum flow techniques, which is described in detail
in Subsection 3.4. Roughly speaking, by setting A′ := CX and by choosing B′ such that it contains
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all leaves of the (d+1)-stars, A′ and B′ fulfill the A′-star cover and the restricted X-neighborhood
property. The more difficult part is to fulfill the restricted Y -neighborhood property. There might
be edges between leaves of the (d+1)-stars and vertices in N(X \A′)\X. If there are no such edges,
then the A′-star cover and restricted neighborhood properties are fulfilled. If there are such edges,
then the trick is to “forbid” the vertices in X \A′, N(X \A′) \X, and their neighbors in Y (that
is, all vertices in Y within distance at most two in G−A′ to a vertex in X \A′) from being used for
recomputing the star packing. These forbidden vertices will contain some leaves of the packing, thus
the star packing between X and Y is recomputed, but excluding the forbidden vertices. The point
is, as we will see, that if the recomputed packing can be used to construct A′ and B′ fulfilling the
A′-star cover property and the two restricted neighborhood properties in the subgraph excluding
the forbidden vertices, then they also fulfill these properties in G. This approach of computing
a packing and forbidding vertices is then iterated until the algorithm finds two vertex subsets A′

and B′ fulfilling the local optimality conditions. In summary, FindExtremal works roughly as
follows:

1. Call StarPacking to compute a packing of (d+ 1)-stars (in order to fulfill the A′-star cover
property and the restricted X-neighborhood property), excluding forbidden vertices.

2. If the restricted Y -neighborhood property can be fulfilled, then construct A′ and B′ and
return.

3. Forbid vertices that prevent the restricted Y -neighborhood property from being fulfilled.

4. Goto 1.

Of course it has to be shown in detail that this approach always terminates and returns a correct
solution. Moreover, it still remains to consider the size condition of Lemma 1.

How to Fulfill the Size Condition. Next, consider the size condition of Lemma 1:

The subset B′ is not empty.

Recall the preconditions of Lemma 1: FindExtremal is only called if Y := V \X contains more
than (d + 1)2 · |X| vertices for d ≤ 1 or more than O(|X|1+ǫ) vertices for d ≥ 2. The problem
is that in the iterative process of computing a star packing and forbidding vertices, all vertices
in X and Y might become forbidden, and hence FindExtremal would not be able to return a
non-empty vertex subset B′. However, one can show that not too many vertices become forbidden
in this process, and that there will be always some vertices in B′ left. To make this possible, it is
necessary that the StarPacking procedure finds a star packing such that the set CX of centers
of (d + 1)-stars is “as large as possible” and that the remaining vertices in X \ CX have only few
neighbors in Y . Then, roughly speaking, since X \ CX contains few vertices, there are only few
neighbors in N(X \CX) \X, and since X is a bdd-d-set, each vertex in N(X \CX) \X has only d
neighbors in Y . Hence, there are only few forbidden vertices, and summing up the number of all
forbidden vertices over all iterations will show that there can be only (d+1)2 ·|X| forbidden vertices
in Y for d ≤ 1 or O(|X|1+ǫ) forbidden vertices for d ≥ 2.

11
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Remarks. Note that the above description of FindExtremal is somewhat simplified; for the
case d ≤ 1 it works as described, but for the case d ≥ 2 we actually compute a packing of stars
with more than d + 1 leaves. The adapted number of leaves depends on ǫ and |X| and guarantees
that FindExtremal iterates only a constant number of times (where the constant depends on ǫ).
Moreover, for d ≥ 2 it is possible that the algorithm returns two subsets A′ and B′ that do not
fulfill the A′-star cover and restricted neighborhood properties, but nevertheless fulfill the local
optimality conditions. However, we emphasize that the main concept is the same as for d ≤ 1, the
difference becomes important in the formal proof of the correctness of FindExtremal.

Proof Structure of the Remainder of this Section. In the following, we shortly outline the structure
of the remaining description of FindExtremal. The main parts are as follows.

1. A proof that if A′ and B′ fulfill the A′-star cover property and the restricted neighborhood
properties, then they also fulfill the local optimality conditions (Subsection 3.3).

2. A description of the StarPacking algorithm (used by FindExtremal in order to fulfill
the A′-star cover property and the restricted X-neighborhood property) and its correctness
proof (Subsection 3.4).

3. A description of the FindExtremal algorithm and its correctness proof (Subsection 3.5).
This part is organized as follows, roughly ordered by increasing technical difficulty.

(a) A pseudo-code formulation of FindExtremal.

(b) A proof of the running time of FindExtremal.

(c) A proof that FindExtremal always outputs A′ and B′ fulfilling the local optimality
conditions.

(d) A proof of the size condition, that is, that FindExtremal always returns a nonempty
set B′.

3.3. Star Cover and Restricted Neighborhood Properties

Recall that FindExtremal tries to find two subsets A′ and B′ that fulfill the local optimality
conditions and the size condition. We repeat the definition of the A′-star cover property and
the restricted neighborhood properties, and show that these properties suffice to show the local
optimality conditions.

A′-star cover property: There exists a packing of vertex-disjoint stars in G[A′ ∪ B′], each star
having at least d + 1 leaves, such that each vertex in A′ is the center of such a star.

Restricted X-neighborhood property: There are no edges between B′ and X \A′.

Restricted Y -neighborhood property: There are no edges between B′ and N(X \ A′) \X.

See Figure 3 for an illustration of these properties.
First, we show that these three properties are at least as strong as the local optimality condi-

tions, that is, the first two properties of Lemma 1:

Lemma 4. Let A′ and B′ be two vertex subsets satisfying the A′-star cover property and the
restricted neighborhood properties. Then, the following two properties hold:

12
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(1) If S′ is a bdd-d-set of the induced subgraph G− (A′ ∪B′), then A′ ∪ S′ is a bdd-d-set of G.
(2) There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

Proof. To prove (1), suppose that S′ is a bdd-d-set of G′ := G − (A′ ∪ B′). To prove that
S′′ := S′∪A′ is a bdd-d-set of G, we have to consider the vertices in NG[B′]\S′′. For these vertices
we have to show that their degree is at most d in G − S′′. To this end, we show that each vertex
in NG[B′] \ A′ ⊇ NG[B′] \ S′′ has degree at most d in G − A′. Since X is a bdd-d-set of G and
since A′ ⊆ X, the only vertices that can have degree more than d in G − A′ are in X \ A′ and
in N(X \A′)\X, but these vertices are neither in B′ nor are they neighbors of vertices in B′ due to
the restricted neighborhood properties, and hence each vertex in NG[B′] \A′ has degree at most d
in G−A′ and, therefore, also in G− S′′.

Before proving (2), one needs to show that A′ is a minimum-cardinality bdd-d-set of G[A′∪B′].
Since X is a bdd-d-set of G, the vertex subset A′ is a bdd-d-set of G[A′ ∪ B′]; moreover, due to
the A′-star cover property, for each vertex v ∈ A′ there is a star with at least d + 1 leaves in B′

with center v. Since each star has at least d + 1 leaves, it has to contain at least one vertex of a
minimum-cardinality bdd-d-set of G[A′∪B′], and, therefore, every bdd-d-set of G[A′∪B′] contains
at least |A′| vertices, showing that A′ is a minimum-cardinality bdd-d-set of G[A′ ∪B′].

To prove (2), suppose that S′ is a minimum-cardinality bdd-d-set of G. If A′ ⊆ S′, then we
are done. Therefore, assume that A′ * S′. We show that we can transform S′ into a bdd-d-set S
with |S| = |S′| and A′ ⊆ S. Let A′′ := A′ \ S′. As shown above, the set A′ is a minimum-
cardinality bdd-d-set of G[A′ ∪B′]. Since the bounded-degree property is hereditary, S′ ∩ (A′∪B′)
is a bdd-d-set of G[A′ ∪ B′]. Since A′ is a minimum-cardinality bdd-d-set of G[A′ ∪ B′], for the
vertex subset B′′ := B′ ∩ S′ we know that |A′′| ≤ |B′′|. We claim that the set S := (S′ \B′′) ∪A′′

(thus, A′ ⊆ S) is also a bdd-d-set of G. Since the vertices in B′′ are the only vertices in S′ \ S,
it suffices to show that these vertices and their neighbors have degree at most d in G − S. As
shown in the proof of (1), each vertex in NG[B′] \A′ has degree at most d in G−A′ and thus each
vertex in NG[B′′] \ A′ has degree at most d in G − A′ and, therefore, S is a bdd-d-set of G. Due
to |A′′| ≤ |B′′|, S is a minimum-cardinality bdd-d-set of G with A′ ⊆ S. �

Lemma 4 will be used in the proof of the correctness of FindExtremal—it helps to make the
description of the underlying algorithm and the corresponding correctness proofs more accessible.

As described in the outline of FindExtremal (Subsection 3.2), the search for the subsets A′ ⊆
X and B′ ⊆ Y will be driven by the search for a packing of vertex-disjoint stars with centers in X
and at least (d + 1) leaves in N(X). Roughly speaking, the centers of such stars with at least
d + 1 leaves will be in A′ and their leaves will be in B′, which fulfills the A′-star cover property,
but in order to fulfill the restricted neighborhood properties the vertices for A′ and B′ have to be
selected carefully. To fulfill the third property of Lemma 1, which says that the returned vertex
set B′ ⊆ Y is not empty, it is necessary that the packing of stars with centers in X and leaves
in N(X), which is used to compute A′ and B′, contains “as many stars with at least d + 1 leaves
as possible”. This is described in more detail in the next subsection.

3.4. Star Packing

As outlined in the preceding subsections, given a graph G and a bdd-d-set X, the task is
to compute a star packing P with the centers of the stars being from X and the leaves being
from N(X) ⊆ Y = V \X. The stars in the packing shall have at most r leaves, where r depends
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on d and is set to

r :=

{

d + 1, if d ≤ 1,

d + 1 + ⌈|X|ǫ⌉, otherwise.

The reason for this distinction between d ≤ 1 and d ≥ 2 will become clear later in the analysis
of the algorithm. For the moment it is only important that r ≥ d + 1, which implies that an
r-star is a forbidden subgraph. To compute the star packing P , we relax, on the one hand, the
requirement that the stars in the packing have exactly r leaves, that is, the packing P might contain
<r-stars. On the other hand, P shall have a maximum number of edges. The rough idea behind
this requirement for a maximum number of edges is to maximize the number of r-stars in P , and
to guarantee that the leaves of many r-stars are not adjacent to centers of <r-stars. Based on P , it
is possible to “separate” many r-stars, whose centers will be in A′ and whose leaves will be in B′,
such that their leaves are not adjacent to the center of any <r-star. This will guarantee that there
are no edges between B′ and X \A′ (restricted X-neighborhood property). For computing such a
star packing, we can restrict our attention to the bipartite graph J induced by the edges between X
and N(X), that is, V (J) = X ∪N(X) and E(J) = {{u, v} ∈ E(G) | u ∈ X and v ∈ N(X)}. The
following lemma is a precise statement of the properties of the star packing. In the lemma, the
centers of the “separated” r-stars are contained in a vertex set CX ⊆ X and the leaves of the
remaining stars are contained in a vertex set CY ⊆ Y . The fact that there are no edges between
the leaves of the “separated” r-stars and the centers of the remaining stars is expressed by saying
that CX ∪ CY is a vertex cover in J . Since FindExtremal will call the star packing algorithm
for subsets of X and Y , we state the lemma with respect to X ′ ⊆ X and Y ′ ⊆ Y .

Lemma 5. In a bipartite graph J with vertex sets X ′ and Y ′, one can find in O(n2 ·m) time a
≤r-star packing P and a vertex cover CX ∪ CY of J , where CX ⊆ X ′ and CY ⊆ Y ′ such that

1. every vertex of CX is the center of an r-star in P and the leaves of the r-stars in P (with
center in CX) are not in CY , and

2. every vertex of CY is a leaf in the star packing (of some ≤r-star with center in X ′ \ CX).

See Figure 4 for an example of such a packing P with vertex cover CX ∪CY . Let ComputePack-
ing(J ,X ′,Y ′) be an algorithm that computes such a packing P and two vertex subsets CX and CY

as stated in Lemma 5.

Proof. From the given bipartite graph J , construct a flow network as follows (see Figure 4).
Introduce two new vertices s and t, and add an edge with capacity r from s to v for every v ∈ X ′,
add an edge with capacity 1 from w to t for every w ∈ Y ′, and add an edge with infinite capacity
from v ∈ X ′ to w ∈ Y ′ if {v,w} ∈ E(J). A maximum flow f corresponds to a packing P of ≤r-stars
in J . Let (S, T ) be the corresponding cut of capacity f with s ∈ S and t ∈ T . The set CX ∪ CY

with CX := X ′ ∩ T and CY := Y ′ ∩ S is a vertex cover for J ; otherwise, there would be an edge
with infinite capacity that leaves S, contradicting the fact that (S, T ) has capacity f . Moreover,
one can observe that the vertices in CX must be centers of vertex-disjoint r-stars, whose leaves are
in T , and the vertices in CY must be leaves of stars in the corresponding packing P (otherwise,
the cut (S, T ) would have higher capacity than the maximum flow).

A maximum flow can be computed in O(n2 ·m) time using, e.g., “Dinic’s algorithm” (cf. [18]).
�
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Y ′

X ′
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CY
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J
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∞
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Figure 4: Example of a bipartite graph J , a packing P (bold edges and black vertices) in J that
fulfills the properties stated in Lemma 5 for r = 4, and the additions to the graph that are used
to prove Lemma 5 by maximum flow / minimum cut duality (s, t, and their incident edges).
The corresponding flow network has the source s and the sink t (assuming that all edges are
directed from bottom to top), where each edge incident to s has capacity r = 4, each edge in J
has capacity ∞, and each edge incident to t has capacity 1. The dashed line shows a minimum
s-t-cut (S, T ), which can be used to compute CX and CY .

We mention in passing that the structure that is found by Lemma 5 can be interpreted as a
generalization of crown structures for Vertex Cover (cf. [14, 2]) to Bounded-Degree Vertex
Deletion.

The algorithm ComputePacking is used by FindExtremal to find A′ and B′ that fulfill the
local optimality conditions. The FindExtremal algorithm is described next.

3.5. The FindExtremal Algorithm

As described in the outline of FindExtremal (Subsection 3.2), the approach of the FindEx-
tremal algorithm is to iteratively call ComputePacking and use the returned packing P and the
vertex sets CX and CY to try to obtain two sets A′ and B′ satisfying the A′-star cover property and
the restricted neighborhood properties, or, if that fails, to forbid parts of graph and to try again.
An important addition for d ≥ 2, which has not been mentioned so far, is that if FindExtremal
fails too many times to find A′ and B′ satisfying the A′-star cover property and the restricted
neighborhood property, then one can directly return two vertex sets A′ and B′ satisfying the local
optimality conditions (the first two properties of Lemma 1).

The description of FindExtremal is divided into four parts. First, we give a pseudo-code
description of FindExtremal, implementing the “trial-and-error” strategy outlined above. Then,
we show the running time of FindExtremal. After that, we show that FindExtremal is correct
in the sense that it returns two subsets A′ and B′ that fulfill the local optimality conditions of
Lemma 1. For the output of FindExtremal there are two different cases to consider, for one
of them we show that the A′-star cover property and the restricted neighborhood properties are
fulfilled, and for the other case we directly show the validity of the local optimality conditions.
Note that the first case applies for all d ≥ 0, but the latter only applies for d ≥ 2. Finally, we
address the last property in Lemma 1, that is, we show that the vertex subset B′ is never empty.
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Procedure: FindExtremal (G,X)
Input: An undirected graph G and a bdd-d-set X of G.
Output: A vertex subset pair (A′, B′) satisfying the local optimality conditions.

1 J ← bipartite graph with X and N(X) as its two vertex subsets and

E(J)← {{u, v} ∈ E(G) | u ∈ X and v ∈ N(X)}
2 FX ← ∅; FY ← ∅
3 j ← 1
4 (P,CX , CY )← ComputePacking(J − (FX ∪ FY ),X \ FX , Y \ FY )
5 if CX = X \ FX then return(X \ FX , Y \ FY )
6 FX ← X \ CX ; FY ← NG[NJ (FX)] \X
7 if d ≥ 2 and j ≥ ⌈1/ǫ⌉+ 1 then return(X \ FX , Y \ FY )
8 j ← j + 1
9 goto 4

Figure 5: Pseudo-code of FindExtremal.

3.5.1. Pseudo-Code for FindExtremal

The pseudo-code in Figure 5 shows the algorithm FindExtremal. The input to FindEx-
tremal is a graph G and a bdd-d-set X. It starts with computing the bipartite graph J induced
by the edges between X and N(X) (line 1). Vertices in X that are forbidden in the course of
the algorithm execution are stored in the set FX , which is initialized with an empty set (line 2).
Vertices in Y that are forbidden in the course of the algorithm execution are stored in the set FY ,
which is also initialized with an empty set (line 2). The variable j counts the number of calls of
ComputePacking (line 4) and is initialized with “1” (line 3). The algorithm always returns a
vertex pair (A′, B′), where A′ = X \FX and B′ = Y \FY (lines 5 and 7), that is, it returns all the
vertices that are not forbidden. There are two possible cases when (A′, B′) is returned:

1. either the vertex set CX contains all vertices in X that are not in FX (line 5) or

2. the algorithm has iterated ⌈1/ǫ⌉+ 1 times (line 7).

We will show that for each of these cases the pair (A′, B′) fulfills the local optimality conditions.
If the first case does not apply, then the algorithm computes the new set FX of forbidden vertices
in X and updates the set FY of forbidden vertices in Y (line 6). After that, it is checked whether
the second case applies (line 7). If not, the counter j is increased by one (line 8) and the algorithm
starts over (line 9) by recomputing the star packing in line 4. See Figure 6 for an example of how
FindExtremal works.

In the remainder of this section, we will show the following three statements.

Statement 1. Algorithm FindExtremal in Figure 5 runs in O(n3 ·m) time.

Statement 2. Algorithm FindExtremal in Figure 5 returns two vertex subsets (A′, B′) that
fulfill the local optimality conditions:

1. If S′ is a bdd-d-set of the induced subgraph G− (A′ ∪B′), then A′ ∪ S′ is a bdd-d-set of G.
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. . .

a

CY

CX

(a) An initial star packing P (bold edges)
computed in line 4 with no vertex be-
ing forbidden. The A′-star cover property
and the restricted X-neighborhood prop-
erty could be fulfilled by choosing A′ =
CX and B′ = Y \ CY . However, the re-
stricted Y -neighborhood property cannot
be fulfilled due to, for example, the edge a.

FX

. . .

(b) Forbidding vertices. In line 6, the
set FX is computed, which is used to
compute the vertices of Y excluded from
the next iteration, namely, the set FY .

B′

A′ = CX

. . .

FX

(c) Computing a new star packing P
and FX , and, then, two sets A′ and B′ that
fulfill the A′-star cover property and the re-
stricted neighborhood properties.

Figure 6: Example for d = 1 of how the algorithm FindExtremal in Figure 5 finds the two vertex
subsets A′ and B′. Solid lines (bold and non-bold) denote the edges in J , dashed lines denote the
edges in E(G) \ E(J). White vertices are forbidden and excluded from further iterations for
computing the star packing P . Black vertices and bold edges are in the star packing P .

2. There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

Statement 3. Let G = (V,E) be an undirected graph and let X be a bdd-d-set of G. If Y = V \X
contains more than (d + 1)2 · |X| vertices for d ≤ 1 or more than c′ · |X|1+ǫ vertices for d ≥ 2 (for
some c′ depending on d and ǫ), then algorithm FindExtremal in Figure 5 returns two vertex
subsets (A′, B′) such that B′ is not empty.

With Statements 1, 2, and 3, Lemma 1 follows immediately.

3.5.2. Running Time of FindExtremal

In order to show the running time, we have to show that an updated FX (line 6) is always a
superset of an old one.

Lemma 6. Assume that FindExtremal does not return in line 5, that is, CX 6= X \FX . Let F ′
X

be the set X \ CX computed in line 6. Then it holds that FX ( F ′
X .

Proof. In line 4 of FindExtremal, the packing P and the vertex sets CX and CY are computed
for the bipartite subgraph J ′ = J−(FX∪FY ) with X ′ := X\FX and Y ′ := Y \FY as the two vertex
subsets. Thus, since CX 6= X \ FX = X ′, CX ( X ′, and, therefore, F ′

X = X \CX ) X \X ′ = FX .
�
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Lemma 6 shows that FindExtremal will eventually terminate (for all d ≥ 0), and we can
prove the running time, which shows Statement 1.

Proposition 1. Algorithm FindExtremal in Figure 5 runs in O(n3 ·m) time.

Proof. In each iteration FindExtremal either returns in line 5 or line 7, or at least one vertex
from X is added to FX due to Lemma 6. Thus, after at most |X| < n iterations, FX = X.
Then, X \ FX is empty and hence CX returned by ComputePacking is empty, and, therefore,
the condition CX = X \ FX = ∅ is true and FindExtremal returns in line 5. In each itera-
tion, FindExtremal calls ComputePacking, which runs in O(n2 ·m) time (Lemma 5); all the
other operations are simple assignments, if-instructions, and neighborhood computations, which
take O(n + m) time. �

3.5.3. Fulfillment of Local Optimality Conditions

In order to show Statement 2, that is, that FindExtremal returns two vertex subsets (A′, B′)
fulfilling the local optimality conditions, it is important to note that

FY = NG[NJ(FX)] \X

is an invariant of FindExtremal (see line 6). We will need this invariant for the proofs of several
lemmas and propositions. The next proposition corresponds to the case that FindExtremal
returns in line 5.

Proposition 2. Let (P,CX , CY ) be the output of ComputePacking(J − (FX ∪FY ),X \FX , Y \
FY ) (line 4). If CX = X \ FX , then A′ = X \ FX and B′ = Y \ FY fulfill the local optimality
conditions.

Proof. We show that A′ and B′ fulfill the A′-star cover property and the restricted neighborhood
properties. Due to Lemma 4, the sets A′ and B′ then also fulfill the local optimality conditions.

In line 4 of FindExtremal, the packing P and the vertex sets CX and CY are computed for
the bipartite subgraph J ′ = J − (FX ∪ FY ) with X ′ := X \ FX and Y ′ := Y \ FY as the two
vertex sets of J ′. Thus, since CX = X ′, due to Lemma 5 we know that CY = ∅, since there are
no stars with centers in X ′ \ CX = ∅. Hence, due to Lemma 5 the vertices in CX are centers
of r-stars with leaves in Y ′, thus A′ = X ′ and B′ = Y ′ fulfill the A′-star cover property. We
emphasize that this is also correct for the case FX = X; in this case, the set A′ is empty, and
the A′-star cover property is trivially fulfilled. The restricted X-neighborhood property, that is,
that there is no edge between B′ and X \ A′ = FX , is fulfilled, since all the neighbors of FX in Y
are in FY = NG[NJ(FX)] \X and therefore not in B′ = Y \ FY . The restricted Y -neighborhood
property, that is, that there is no edge between B′ and N(X \A′) \X = NJ(FX), is fulfilled, since
all the neighbors of NJ(FX) are in FY and therefore not in B′. �

We mention in passing that for the case FX = X all vertices in B′ have distance at least three
to vertices in X, as all vertices of distance at most two from vertices in X are in FY . Since X is a
bdd-d-set of G, the vertices in B′ thus have degree at most d, and all their neighbors have degree
at most d as well. This is the reason why the vertices in B′ do not have to be considered for a
solution even when A′ is empty.

Next, we deal with the more involved case that FindExtremal returns in line 7. We need to de-
fine some notation in order to be able to refer to the variables in FindExtremal in some particular
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Figure 7: Illustration of the relation of the sets F j
X , F j

Y , Cj
X , Cj−1

X , and a packing P j for r = 4. Only

the r-stars with center in Cj
X in Pj are shown (there might exist ≤r-stars with center in Cj−1

X \Cj
X).

iteration. Let F j
X and F j

Y be the sets FX and FY , respectively, in the jth call of ComputePack-

ing (line 4). Furthermore, let (P j , Cj
X , Cj

Y ) be the output of the jth call of ComputePack-

ing(J − (F j
X ∪ F j

Y ),X \ F j
X , Y \ F j

Y ). Since F j
X = X \ Cj−1

X (line 6) it holds that Cj−1
X = X \ F j

X .
See Figure 7 for an illustration.

The key for the proof that FindExtremal returns two vertex sets A′ and B′ satisfying the
local optimality conditions is the following result that, if FindExtremal is iterated sufficiently
many times, then every minimum-cardinality solution contains CX .

Lemma 7. For j ≥ ⌈1/ǫ⌉ + 1 and d ≥ 2, the set Cj
X is contained in every minimum-cardinality

bdd-d-set of G.

The proof of Lemma 7 is given below. Before that, we use Lemma 7 to show that the two
sets (A′, B′) returned by FindExtremal in line 7 fulfill the local optimality conditions.

Proposition 3. If j ≥ ⌈1/ǫ⌉ + 1 for d ≥ 2, then the following properties hold for the vertex
subsets (A′, B′) returned by FindExtremal in line 7:

(1) If S′ is a bdd-d-set of the induced subgraph G− (A′ ∪B′), then A′ ∪ S′ is a bdd-d-set of G.
(2) There is a minimum-cardinality bdd-d-set S of G with A′ ⊆ S.

Proof. We first show the second property. Since F j
X is set to X \Cj

X in line 6, A′ = X \F j
X = Cj

X ,
and hence by Lemma 7 there exists a minimum-cardinality bdd-d-set S such that A′ ⊆ S.

Next, we show the first property. Let S′ be a bdd-d-set of G−(A′∪B′). To show that A′∪S′ is a
bdd-d-set of G, it suffices to show that all vertices in N [B′]\A′ have degree at most d in G−(A′∪S′).
Since X is a bdd-d-set of G, X \A′ = F j

X is a bdd-d-set for G−A′. Therefore, in G−A′, the only

vertices that possibly have degree more than d are in F j
X or adjacent to vertices in F j

X . Since F j
Y

is set to NG[NJ(F j
X)] \X (line 6), neither the vertices in B′ = Y \ F j

Y nor their neighbors N(B′)

can be in F j
X or NJ(F j

X), and thus the vertices in N [B′] \A′ have degree at most d in G−A′ and
therefore also in G− (A′ ∪ S′). Hence, A′ ∪ S′ is a bdd-d-set of G, which shows the first property.

�

With Proposition 2 and Proposition 3, Statement 2 follows immediately.
It remains to show Lemma 7. To this end, we first prove the following lemma.

Lemma 8. Suppose that d ≥ 2 and Cj
X 6= X \ F j

X . If for a minimum-cardinality bdd-d-set S it

holds that |Cj
X \ S| = l, then |Cj−1

X \ S| ≥ l · ⌈|X|ǫ⌉.
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Proof. The proof approach is to assume that |Cj−1
X \ S| < l · ⌈|X|ǫ⌉ and to show that then

there exists a bdd-d-set of G that is smaller than S, contradicting the assumption that S is a
minimum-cardinality bdd-d-set.

First, for a simpler presentation of the main argument, assume that v is the only vertex in Cj
X

that is not in S, that is, Cj
X \ S = {v}. Due to Lemma 5, each vertex of Cj

X is the center of

an r-star in the star packing P j. Since P j is a star packing for J − (F j
X ∪ F j

Y ), all the leaves of

these stars are in Y \ F j
Y . Recall that r = d + 1 + ⌈|X|ǫ⌉ (cf. Subsection 3.4). Since v 6∈ S, at

least r − d = ⌈|X|ǫ⌉ + 1 leaves of the r-star in P j with center v must be in S, since otherwise v
would have degree more than d in G−S. Let Sv be the set of these leaves. If Cj−1

X \S contains less

than ⌈|X|ǫ⌉ vertices, then one obtains a smaller bdd-d-set S′ by setting S′ := (S \Sv)∪ (Cj−1
X \S),

contradicting the assumption that S is minimum; the set S′ is clearly smaller than S, and one can
show that S′ is a bdd-d-set as follows. We only have to verify that each vertex in N [Sv] \ S′ has
degree at most d in G − S′. Clearly, Cj−1

X = X \ F j
X ⊆ S′. Since X is a bdd-d-set of G, the only

vertices in G − S′ that could have degree more than d are in F j
X and NJ(F j

X). Since F j
Y is set

to NG[NJ(F j
X)] \X (line 6), neither the vertices in Sv ⊆ Y \ F j

Y nor their neighbors N(Sv) can be

in F j
X or NJ(F j

X). Thus, the vertices in N [Sv] \ S′ have degree at most d in G − S′. This shows
that S′ is a bdd-d-set of G.

Thus, Cj−1
X \S contains at least ⌈|X|ǫ⌉ vertices. One can show in complete analogy that if Cj

X\S

contains l vertices, then Cj−1
X \ S contains at least l · ⌈|X|ǫ⌉ vertices. �

Now, we are ready to prove Lemma 7, that is, that for j ≥ ⌈1/ǫ⌉ + 1 and d ≥ 2, the set Cj
X is

contained in every minimum-cardinality bdd-d-set of G.

Proof (of Lemma 7). In order to show the lemma, that is, that Cj
X is contained in every

minimum-cardinality bdd-d-set, we assume that there exists a minimum-cardinality bdd-d-set S
such that Cj

X 6⊆ S, and show a contradiction by proving that S cannot have minimum cardinality.

By assumption, Cj
X \ S contains at least one vertex. By Lemma 8, then Cj−1

X \ S contains at
least ⌈|X|ǫ⌉ vertices. By a repeated application of Lemma 8, we obtain that C1

X \ S contains at
least ⌈|X|ǫ⌉j−1 ≥ |X|⌈1/ǫ⌉·ǫ ≥ |X| vertices. However, for each vertex in C1

X \ S there is a vertex-
disjoint r-star (Lemma 5), where r = d + 1 + ⌈|X|ǫ⌉ (cf. Subsection 3.4), and hence S would
have to contain more than |X| vertices in order to be a bdd-d-set. This is a contradiction to the
assumption that S has minimum cardinality, since X is a bdd-d-set of G and therefore |X| is a
trivial upper bound of the size of a minimum-cardinality bdd-d-set of G. This shows that every
minimum-cardinality bdd-d-set S contains Cj

X . �

In summary, FindExtremal always returns two sets A′ and B′ satisfying the local optimality
conditions. It remains to show Statement 3, that is, that the returned set B′ is not empty. The
key to showing this is to prove that there cannot be too many forbidden vertices in FY compared
to FX .

3.5.4. Number of Forbidden Vertices

Recall that one of the preconditions of Statement 3 is that Y contains more than (d + 1)2 · |X|
vertices for d ≤ 1 or more than O(|X|1+ǫ) vertices for d ≥ 2. The point is, as we will show, that
the set FY in FindExtremal always contains at most (d + 1)2 · |FX | vertices for d ≤ 1 or at
most O(|FX |

1+ǫ) vertices for d ≥ 2. Hence, the set B′ := Y \ FY returned by FindExtremal can
never be empty.
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Figure 8: Illustration of the relation of the sets F j
X , F j

Y , Cj
X , Cj

Y , Cj−1
X , and the packing P j

for r = 4.

Lemma 9. For each j ≥ 1, the set F j
Y has size at most r(1 + d + dj(d − 1)j) · |F j

X |.

Proof. We recall the definitions of some important notations. Let F j
X and F j

Y be the sets FX

and FY , respectively, in the jth call of ComputePacking (line 4 of FindExtremal). Further-
more, let (P j , Cj

X , Cj
Y ) be the output of the jth call of ComputePacking(J − (F j

X ∪ F j
Y ),X \

F j
X , Y \ F j

Y ). Note that F 1
X = F 1

Y = ∅ (line 2 of FindExtremal). Since F j
X = X \ Cj−1

X (line 6

of FindExtremal) it holds that Cj−1
X = X \ F j

X . See Figure 8 for an illustration that shows

the variables that are important in this proof. Recall that F j
Y = NG[NJ(F j

X )] \ X (line 6 of
FindExtremal).

First, we bound the size of F 2
Y with respect to F 2

X . Due to Lemma 5, C1
X ∪ C1

Y is a vertex
cover for J and thus there are no edges between F 2

X = X \ C1
X and Y \ C1

Y . Hence, since due to
Lemma 5 every vertex in C1

Y is the leaf of a ≤r-star with center in F 2
X , we have NJ(F 2

X) = C1
Y ,

and |NJ(F 2
X )| ≤ r · |F 2

X |. Since X is a bdd-d-set of G, it follows that |F 2
Y | = |NG[NJ(F 2

X)] \X| ≤
r(d + 1) · |F 2

X |.
Two important observations for the above size bound are that F 2

Y contains all vertices that
have distance at most one to a vertex in C1

Y in G − X, and that the vertices in C1
Y are leaves

of ≤r-stars with center in F 2
X . We generalize these observations and show the general size bound

of F j
Y with respect to F j

X . To this end, define

Dj
X := Cj−1

X \ Cj
X(for j ≥ 2).

Hence, Dj
X is exactly the set F j+1

X \F j
X (informally speaking, the set of vertices that are added to FX

in the jth iteration of FindExtremal), and NG[NJ(Dj
X)] \X contains all vertices in F j+1

Y \ F j
Y .

By Lemma 5, Cj
X ∪ Cj

Y is a vertex cover of J − (F j
X ∪ F j

Y ), and the vertices in Cj
Y are the

leaves of ≤r-stars with center in Dj
X . Thus, there are no edges between Dj

X and Y \ (F j
Y ∪ Cj

Y )

and therefore NJ(Dj
X) contains the vertices in Cj

Y and possibly also vertices in F j
Y , but no vertices

in Y \ (F j
Y ∪Cj

Y ) (cf. Figure 8). The number of vertices in Cj
Y is easy to bound: since the vertices

in Cj
Y are the leaves of a ≤r-star packing with centers in Dj

X , we have

|Cj
Y | ≤ r · |Dj

X |.

For a vertex v of NJ(Dj
X)∩F j

Y , observe that v is in F j
Y because either it is in Cj′

Y for some j′ < j,

or there is a path in G − X of length at most j − j′ from v to a vertex in Cj′

Y for some j′ < j.

Hence, for 1 ≤ j′ < j, in j iterations the algorithm FindExtremal can only add vertices to F j
Y

that are at distance at most j − j′ from a vertex in Cj′

Y in G − X. To simplify the analysis, for
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each 1 ≤ j′ < j, we bound the number of vertices at distance at most j + 1 from Cj′

Y in G −X.

Since G−X has bounded degree d, the number of all vertices at distance at most j + 1 from Cj′

Y

in G−X (including the vertices in Cj′

Y ) can be bounded by

r · |Dj′

X |+ rd · |Dj′

X |+ rd(d− 1) · |Dj′

X |+ rd(d− 1)2 · |Dj′

X |+ · · ·+ rd(d− 1)j · |Dj′

X |

= |Dj′

X | · r
(

(1 + d) + d((d− 1) + (d− 1)2 + · · ·+ (d− 1)j)
)

≤ |Dj′

X | · r
(

(1 + d) + dj(d− 1)j
)

.

In total, since F j
X =

⋃

1≤j′<j Dj′

X and Dj′

X ∩ Dj′′

X = ∅ for j′ 6= j′′ (by the definition of Dj
X), we

obtain

|F j
Y | =

∑

1≤j′<j

|Dj′

X | ≤
∑

1≤j′<j

|Dj′

X | · r
(

1 + d + dj(d − 1)j
)

= |F j
X | · r

(

1 + d + dj(d − 1)j
)

.

�

With Lemma 9 one can now show the following proposition, which proves Statement 3.

Proposition 4. Let G = (V,E) be an undirected graph and let X be a bdd-d-set of G. If Y = V \X
contains more than (d + 1)2 · |X| vertices for d ≤ 1 or more than c′ · |X|1+ǫ vertices for d ≥ 2 (for
some c′ depending on d and ǫ), then algorithm FindExtremal in Figure 5 returns two vertex
subsets (A′, B′) such that B′ is not empty.

Proof. For d ≤ 1 (recall that r = d + 1 in this case, cf. Subsection 3.4), if FindExtremal
returns (A′, B′) in line 5, then by Lemma 9 one knows that |FY | ≤ |FX | · (d+1)2 . Since Y contains
more than (d + 1)2 · |X| vertices and since FX ⊆ X, B′ = Y \ FY cannot be empty.

For d ≥ 2 (recall that r = d + 1 + ⌈|X|ǫ⌉ in this case), if FindExtremal returns (A′, B′)
(in line 5 or line 7), then j ≤ ⌈1/ǫ⌉ + 1 (j ≤ ⌈1/ǫ⌉ + 1 in line 5 and j = ⌈1/ǫ⌉ + 1 in line 7).
Since FX ⊆ X, one knows by Lemma 9 that

|FY | ≤ (d + 1 + ⌈|X|ǫ⌉)
(

1 + d + d(⌈1/ǫ⌉ + 1)(d − 1)⌈1/ǫ⌉+1
)

· |X|

≤ c′ · |X|1+ǫ (for some c′ depending on d and ǫ).

Hence, since Y contains more than c′ · |X|1+ǫ vertices, B′ = Y \ FY cannot be empty. �

This finishes the proof of the local optimization theorem for Bounded-Degree Vertex Dele-
tion (Theorem 1).

Remarks. Note that the entire local optimization algorithm is based on packing stars. For example,
for d = 1, it is based on a packing of stars with two leaves (P3). We can use our local optimization
algorithm also for the problem of packing at least k copies of P3 in a given graph G, called P3-
Packing. First, we compute again a packing of stars with two leaves. If we find at least k stars,
then we abort returning “yes-instance”. Otherwise, let the set X contain the vertices of the less
than k stars, and proceed with the kernelization as described. To show that the algorithm returns
two vertex subsets A′ and B′ satisfying the A′-star cover property for d = 1, we used the fact that
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there is a packing of 2-stars in G[A′ ∪ B′] such that each vertex in A′ is the center of one such
star (and the leaves of these 2-stars are therefore in B′). Moreover, the restricted neighborhood
properties also imply that there is no P3 using vertices from B′ and G \ A′, thus using the stars
in G[A′∪B′] is always optimal. The size bound and the remaining proof then are exactly the same.
Thus, we obtain the following result.

Corollary 2. P3-Packing admits a problem kernel of 15k vertices.

The currently best-known problem kernel for P3-Packing has 7k vertices [42]. This improvement
stems basically from some local modification of an initial maximal P3-packing and would also work
with our technique.

The main point we want to make here is that there seems to be a close relationship between the
kernelizations for star packing problems and Bounded-Degree Vertex Deletion, and similar
observations also hold for other packing/deletion problem pairs. Note that the problem of packing
at least k stars of more than two leaves (K1,l-Packing for constant l) admits a problem kernel
of O(k2) vertices [40]. It is conceivable that our technique also works for this problem. However,
to this end, one would have to provide a new proof of Proposition 3.

4. Parameterized Hardness for Unbounded d

Our results in Section 3 show that Bounded-Degree-d Vertex Deletion is fixed-parameter
tractable with respect to the parameter k if d is a constant. However, as we will prove in this section,
the problem becomes presumably fixed-parameter intractable for unbounded d—in other words,
we show it to be W[2]-complete.

A parameterized problem L is contained in W[2] if there is a parameterized reduction from L to
the Weighted Satisfiability problem for polynomial-size weft-two circuits of constant depth [19].
Herein, the weft of a circuit C is the maximum number of “large” gates on an input-output path
in C. In a Boolean circuit, a gate (¬, ∧, ∨) is small if it has fan-in bounded by a function of the
parameter k, whereas large gates have unbounded fan-in. The depth of a circuit C is defined as
the maximum number of gates on an input-output path in C. The weight of a truth assignment is
the number of variables that are set true. To show W[2]-hardness, we employ the W[2]-complete
Dominating Set problem (see, e.g., [20]).

Dominating Set
Input: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Does there exist a vertex subset S ⊆ V of size at most k such that every
vertex of V belongs to S or has a neighbor in S?

Theorem 2. For d being unbounded, Bounded-Degree Vertex Deletion is W[2]-complete
with respect to the parameter k.

Proof. The W[2]-hardness of Bounded-Degree Vertex Deletion can be easily shown by a
parameterized reduction from the W[2]-complete Dominating Set problem: Pad the vertices in
the Dominating Set instance with degree-one neighbors such that every vertex has the same
degree. Let d + 1 be the degree of the resulting regular graph. For each original vertex, at least
one neighbor or the vertex itself has to be removed in order to obtain maximum degree d (we
assume without loss of generality that no newly added degree-one vertex is removed by an optimal
solution), which directly corresponds to a dominating set in the Dominating Set instance.

23



To appear in Journal of Computer and System Sciences

Second, we show the membership of Bounded-Degree Vertex Deletion in W[2]. Let (G =
(V,E), k, d) be an instance of Bounded-Degree Vertex Deletion. We construct a Boolean
circuit of weft two and constant depth, where small gates have fan-in bounded by an arbitrary
fixed function of k. This shows membership in W[2].

The Boolean circuit is given by a Boolean expression E that is satisfiable by a weight-k truth
assignment if and only if G has a k-vertex solution to Bounded-Degree Vertex Deletion.

The informal idea of the construction is as follows: We have k choices to select vertices in V
to be in the solution S. For each choice, we introduce a block of |V | Boolean variables. A Boolean
subexpression E1 will ensure that only one Boolean variable of each block can be set to true;
the variable set to true in a block corresponds directly to the choice of the corresponding vertex
to be in S. To avoid that a single vertex appears twice in a solution, we introduce a second
subexpression E2. Furthermore, we need Boolean subexpressions to express that a vertex v ∈ V is
in S (subexpression E3(v)) or has to have at least deg(v)−d neighbors in S (subexpression E4(v)).
The complete Boolean expression can then be written as

E := E1 ∧ E2 ∧
∧

v∈V +

(E3(v) ∨ E4(v)),

where V + is the set of vertices in V with degree at least d + 1. Next, we formally describe the
corresponding Boolean expressions:

The set of Boolean variables for E is

X := {c[i, u] : 1 ≤ i ≤ k, u ∈ V },

where c[i, u] means that the ith choice of a vertex of S is vertex u. We define

E1 :=

k
∧

i=1

∧

u,u′∈V,u 6=u′

¬(c[i, u] ∧ c[i, u′]),

meaning that no two variables in the same block can be set true,

E2 :=
∧

u∈V

∧

1≤i<j≤k

¬(c[i, u] ∧ c[j, u]),

meaning that no two variables corresponding to the same vertex are set true, and

E3(v) :=
∨

1≤i≤k

c[i, v],

meaning that at least one variable corresponding to vertex v is set true in some block. Let R(k, r)
denote the set of size-r subsets of {1, . . . , k}. Finally, we define

E4(v) :=
∨

R′∈R(k,deg(v)−d)

∧

i∈R′

∨

u∈N(v)

c[i, u].

Informally speaking, this subexpression examines, for a given vertex v, every possible subset of
blocks that is large enough to witness that sufficiently many neighbors (that is, at least deg(v)−d)
of v are chosen to be in the solution. Subexpression E4(v) checks for every block B in each such
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subset whether at least one variable of a neighbor of v is set true in B and returns true if this
is the case for all blocks in the subset. Due to expression E1 we know that then there are at
least deg(v)− d neighbors of v chosen to be in the solution S.

One can easily verify that E is satisfiable by a weight-k truth assignment if and only if G has
a k-vertex solution to Bounded-Degree Vertex Deletion. Moreover, the depth of the circuit
is constant and the weft is two, as the only large gates (that is, with fan-in that is not bounded
by a function of k) correspond to the outermost conjunction of E (over all v ∈ V +), the inner
conjunction

∧

of E1, the outermost conjunction of E2, and the innermost disjunction of E4(v). All
other gates have fan-in bounded by some function of k. �

5. Conclusion

Our main result in this paper is a generalization of the Nemhauser-Trotter-Theorem, which
applies to the Bounded-Degree Vertex Deletion problem with d = 0 (that is, Vertex
Cover), to the general case with arbitrary d ≥ 0. In particular, in this way we contribute an
almost linear-vertex problem kernel for Bounded-Degree-d Vertex Deletion with respect to
the parameter k for any fixed d, that is, a kernel of O(k1+ǫ) vertices for any fixed d. For d ≤ 1, the
same method even gives a linear-vertex problem kernel. To this end, we developed a new algorith-
mic strategy that is based on extremal combinatorial arguments. The original NT-Theorem [36]
has been proven using linear programming relaxations—we see no way how this could have been
generalized to Bounded-Degree Vertex Deletion. By way of contrast, we presented a purely
combinatorial data reduction algorithm which is also completely different from known combinato-
rial data reduction algorithms for Vertex Cover (see [1, 2, 5, 13]). Finally, Baldwin et al. [4,
page 175] remarked that, with respect to practical applicability in the case of Vertex Cover
kernelization, combinatorial data reduction algorithms are more powerful than “slower methods
that rely on linear programming relaxation”. Some recent experimental results [35] partially ex-
ploiting our data reduction for Bounded-Degree Vertex Deletion confirm the relevance of
the proposed kernelization.

Our W[2]-completeness result for Bounded-Degree Vertex Deletion with unbounded de-
gree value d gives a complementing negative result that shows the fundamental limitations con-
cerning fixed-parameter algorithms for Bounded-Degree Vertex Deletion with respect to the
parameter “solution size”.

As to challenges for future research, first of all, does there exist a linear-vertex problem kernel for
Bounded-Degree-d Vertex Deletion for every constant d? Moreover, it would be worthwhile
to study whether our methods can also be successfully applied to vertex-weighted problem variants
(such as does the Nemhauser-Trotter-Theorem). Finally, applicability to the problem of generating
regular graphs (that is, degree exactly d for all vertices) should be investigated as well (cf. [32]).
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