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The Vertex Cover Problem

Vertex Cover

Input: An undirected graph G = (V ,E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set S ⊆ V , |S | ≤ k, such that
each edge has a least one endpoint in S .

Example
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Nemhauser and Trotter’s Local Optimization Theorem

NT-Theorem [Nemhauser & Trotter, Math. Program. 1975]

For G = (V ,E ) one can compute in polynomial time a partition
of V into three subsets A, B, and C :

A

B
C

1. There is a min.-cardinality vertex cover S of G with A ⊆ S

2. If S ′ is a vertex cover of G [C ], then A ∪ S ′ is a vertex cover
of G

3. Every vertex cover of G [C ] has size at least |C |/2
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Consequences

A

B
C

I A ∪ C is a factor-2 approximate vertex cover of G .

I G [C ] is a 2k-vertex problem kernel for Vertex Cover.
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Fixed-Parameter Tractability and Problem Kernel

Fixed-Parameter Tractability

A parameterized problem with input instance (I , k) is
fixed-parameter tractable with respect to parameter k if it can be
solved in f (k) · poly(|I |) time.

Problem Kernel

(I , k)
data reduction rules

(I ′, k ′)
poly(|I |) time

I (I , k) ∈ L if and only if (I ′, k ′) ∈ L,

I k ′ ≤ k, and

I |I ′| ≤ g(k) for some function g
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Generalizing Vertex Cover

d -Bounded-Degree Deletion

Input: An undirected graph G = (V ,E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set S ⊆ V , |S | ≤ k, such that
each vertex in G [V \ S ] has degree at most d?

Example for d = 2

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 6/16



Generalizing Vertex Cover

d -Bounded-Degree Deletion

Input: An undirected graph G = (V ,E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set S ⊆ V , |S | ≤ k, such that
each vertex in G [V \ S ] has degree at most d?

Example for d = 2

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 6/16



Generalizing Vertex Cover

d -Bounded-Degree Deletion

Input: An undirected graph G = (V ,E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set S ⊆ V , |S | ≤ k, such that
each vertex in G [V \ S ] has degree at most d?

Example for d = 2

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 6/16



Motivation: Finding Dense Subgraphs

I Finding max.-cardinality cliques is an important task in
Bioinformatics

I Successful approach: Transform to the dual Vertex Cover
problem
[Chesler et al., Nature Genetics, 2005]

[Baldwin et al., J. Biomed. Biotechnol., 2005]

[Abu-Khzam et al., Theory Comput. Syst., 2007]

I Drawback: cliques are overly restrictive

I Use s-plexes instead of cliques

s-plex

A graph is an s-plex if each vertex is
adjacent to all but ≤ s − 1 vertices. 3-plex
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Motivation: Finding Dense Subgraphs

Maximum-cardinality 4-plex in
fission yeast protein-protein in-
teraction network

Corresponding complement

(Data source: www.thebiogrid.org)
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Known Results for d -Bounded-Degree Deletion

I NP-complete for all d ≥ 0
[Lewis and Yannakakis, J. Comput. System Sci., 1980]

I Can be solved in time O((d + k)k+1 · n)
[Nishimura, Ragde, Thilikos, Discrete Appl. Math., 2005]

I Enumeration of all minimal solutions in
time O((d + 2)k · (k + d)2 ·m)
[Komusiewicz, Hüffner, Moser, Niedermeier, Theor. Comput. Sci.]

I Problem kernel of size 15k for d = 1
Problem kernel of size O(k2) for constant d ≥ 2
[Prieto and Sloper, Theor. Comput. Sci., 2006]

I Experimental study for d = 0 (Vertex Cover)
[Abu-Khzam et al., ALENEX 2004]
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“NT-Theorem” for d -Bounded-Degree Deletion

For G = (V ,E ) one can compute in polynomial time a partition
of V into three subsets A, B, and C :

A

B
C

1. There is a min.-cardinality solution S for G with A ⊆ S

2. If S ′ is a solution for G [C ], then A ∪ S ′ is a solution for G

3. Every solution for G [C ] has size at least

|C |
d3 + 4d2 + 6d + 4

⇒ G [C ] is a (d3 + 4d2 + 6d + 4) · k-vertex problem kernel.
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O(k2)-Vertex Problem Kernel for d -Bounded-Degree Del.

High-Degree Reduction Rule

If there exists a vertex v ∈ V
with deg(v) > d + k, then
delete v and set k := k − 1.

v

Low-Degree Reduction Rule

If there exists a vertex v ∈ V such
that ∀w ∈ N[v ] : deg(w) ≤ d ,
then delete v .

v N(v)

≤ d

≤ d + k

≤ k. . .

“low-degree vertices”

“high-degree vertices” . . .

. . .

A

B

C

⇒ O(k2)-vertex kernel
for constant d
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A Linear-Vertex Kernel

Basic Observation
A star with d + 1 leaves is a forbidden
subgraph for graphs of maximum degree d .

d = 2

First Step of Kernelization

Find a maximal collection of vertex-disjoint copies of a star with
d + 1 leaves.

X

N(X )

N2(X )

. . . I G [V \ X ] has
maximum degree d

I There are ≤ k stars
in the collection

I |X | = O(k)

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 12/16



A Linear-Vertex Kernel

Basic Observation
A star with d + 1 leaves is a forbidden
subgraph for graphs of maximum degree d .

d = 2

First Step of Kernelization

Find a maximal collection of vertex-disjoint copies of a star with
d + 1 leaves.

X

N(X )

N2(X )

. . .

I G [V \ X ] has
maximum degree d

I There are ≤ k stars
in the collection

I |X | = O(k)

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 12/16



A Linear-Vertex Kernel

Basic Observation
A star with d + 1 leaves is a forbidden
subgraph for graphs of maximum degree d .

d = 2

First Step of Kernelization

Find a maximal collection of vertex-disjoint copies of a star with
d + 1 leaves.

X

N(X )

N2(X )

. . . I G [V \ X ] has
maximum degree d

I There are ≤ k stars
in the collection

I |X | = O(k)

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 12/16



Ideal Situation

X

N2(X )

N(X )
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Main Idea for Linear-Vertex Kernel

X

N(X )

N2(X )

Observation
For each gray vertex in X there are at most d · (d + 1) green
vertices in V \ X .

⇒ The remaining graph contains O(k) vertices for constant d .
⇒ d-Bounded-Degree Deletion admits an O(k)-vertex problem
kernel.
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u v
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u v

X

N(X )
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x y z

Observation
For each gray vertex in X there are at most d · (d + 1) green
vertices in V \ X .

⇒ The remaining graph contains O(k) vertices for constant d .
⇒ d-Bounded-Degree Deletion admits an O(k)-vertex problem
kernel.

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 14/16



Main Idea for Linear-Vertex Kernel

u v

X

N(X )

N2(X )
N[{u, v}] \ XN[{x , y , z}] \ X

x y z

Observation
For each gray vertex in X there are at most d · (d + 1) green
vertices in V \ X .

⇒ The remaining graph contains O(k) vertices for constant d .
⇒ d-Bounded-Degree Deletion admits an O(k)-vertex problem
kernel.

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 14/16



Main Idea for Linear-Vertex Kernel

u v

X

N[{u, v}] \ XN[{x , y , z}] \ X

x y z

Observation
For each gray vertex in X there are at most d · (d + 1) green
vertices in V \ X .

⇒ The remaining graph contains O(k) vertices for constant d .
⇒ d-Bounded-Degree Deletion admits an O(k)-vertex problem
kernel.

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 14/16



Main Idea for Linear-Vertex Kernel

u v

X

N[{u, v}] \ XN[{x , y , z}] \ X

x y z

Observation
For each gray vertex in X there are at most d · (d + 1) green
vertices in V \ X .

⇒ The remaining graph contains O(k) vertices for constant d .
⇒ d-Bounded-Degree Deletion admits an O(k)-vertex problem
kernel.

Fellows, Guo, Moser, Niedermeier A Generalization of Nemhauser and Trotter’s Local Optimization Theorem 14/16



Outlook

Further Results

I Bounded-Degree Deletion is W [2]-complete for unbounded d .

I Implementation and experiments
[Moser, Niedermeier, Sorge, Manuscript, submitted]

Future Research

I Further improvement of the kernel size.

I For which other problems does this technique work?
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Thank you!
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