
Exact Algorithms
for Generalizations of Vertex Cover

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Informatiker

FRIEDRICH-SCHILLER-UNIVERSIT ̈AT JENA
Fakultät für Mathematik und Informatik

eingereicht von Hannes Moser

Betreuer: Prof. Dr. Rolf Niedermeier
Dipl.-Inf. Jiong Guo
Dipl.-Inf. Sebastian Wernicke

Jena, 09.11.2005

Zusammenfassung

Das Vertex Cover Problem ist ein Graphenproblem, das in der theore-
tischen Informatik intensiv untersucht wurde. Vertex Cover ist wie folgt
definiert. Für einen gegebenen Graphen und eine positive ganze Zahl k ist zu
bestimmen, ob eine Knotenmenge V ′ mit maximal k Knoten existiert, so dass
jede Kante des Graphen zu mindestens einem Knoten aus V ′ inzident ist. Ei-
nige wichtige Generalisierungen dieses Problems sind Partial Vertex Co-
ver, Connected Vertex Cover und Capacitated Vertex Cover,
welche sowohl in der Theorie als auch in Anwendungen bedeutend sind. Ver-
tex Cover sowie diese Generalisierungen sind jedoch NP-vollständig, d.h.
es sind keine Algorithmen bekannt, die sie in Polynomialzeit lösen können.
Wir müssen exponentielles Laufzeitverhalten grundsätzlich in Kauf nehmen,
um optimale Lösungen dieser Probleme zu finden.

Wir verfolgen in dieser Arbeit den Ansatz sogenannter parametrisierter
Algorithmen. Hierbei wird die Laufzeit im Gegensatz zur klassischen Kom-
plexitätstheorie in Abhängigkeit der Eingabegröße und eines sogenannten
Problemparameters gemessen. Es gibt verschiedene sinnvolle Problempara-
meter, wie zum Beispiel bei Vertex Cover die maximale Lösungsgröße k.
Ein Problem heisst festparameter-handhabbar bezüglich Parameter k, wenn
sich ein Lösungsalgorithmus mit Laufzeit f(k) · nO(1) finden läßt, wobei n
die Größe der Eingabeinstanz darstellt und die berechenbare Funktion f nur
von k abhängt. Dies bedeutet, dass für kleine Werte von k und einem f(k)
wie z.B. 2k der exponentielle Laufzeitanteil klein gehalten werden kann. Die
Klasse solcher parametrisierter Probleme, welche festparameter-handhabbar
sind, wird mit FPT bezeichnet.

Diese Arbeit knüpft an eine Arbeit an, in welcher gezeigt wurde, dass
mit der Lösungsgröße als Parameter sowohl Connected Vertex Cover
als auch Capacitated Vertex Cover festparameter-handhabbar sind,
während Partial Vertex Cover es wohl nicht ist. Hier werden nun diese
drei Generalisierungen unter einer anderen Parametrisierung betrachtet. Der
verwendete Parameter ist die sogenannte Baumweite, welche die Ähnlichkeit
eines Graphen zu einem Baum beschreibt. Die Arbeit ist dabei folgenderma-
ßen aufgebaut.

Im ersten Kapitel geben wir einen Überblick zu Vertex Cover und
seinen Generalisierungen und erwähnen die wichtigsten Begriffe, die in dieser
Arbeit Anwendung finden.

Im zweiten Kapitel geben wir zuerst eine kurze Einführung in wichtige
Begriffe aus der Graphentheorie. Danach erklären wir die Grundlagen der
parametrisierten Komplexitätstheorie anhand von einfachen Beispielen.

Im dritten Kapitel geben wir die genauen Definitionen von Partial Ver-
tex Cover, Connected Vertex Cover und Capacitated Vertex
Cover an. Für diese Probleme präsentieren wir bekannte und neue Resul-
tate und stellen typische Anwendungen vor.

Das vierte Kapitel ist das Hauptkapitel der Arbeit. In diesem Kapitel be-
trachten wir die Festparameter-Handhabbarkeit von Partial Vertex Co-
ver, Connected Vertex Cover und Capacitated Vertex Cover
bezüglich der Baumweite als Parameter. Die Baumweite und die damit zu-
sammenhängenden sogenannten Baumzerlegungen für Graphen werden ein-
geführt, desweiteren erläutern wir die Technik des “dynamischen Program-
mierens auf Baumzerlegungen”. Mit Hilfe von dynamischer Programmie-
rung auf Baumzerlegungen geben wir für jede dieser Generalisierungen einen
Lösungsalgorithmus an und analysieren dessen Laufzeit in Abhängigkeit der
Baumweite. Damit können wir zeigen, dass Partial Vertex Cover sowie
Connected Vertex Cover mit Baumweite als Parameter festparameter-
handhabbar sind. Für Capacitated Vertex Cover zeigen wir, dass es
für Graphen mit beschränktem Knotengrad festparameter-handhabbar ist,
wenn der Parameter die Baumweite ist.

Im Anschluss dazu betrachten wir im fünften Kapitel eine Variante von
Capacitated Vertex Cover, welche auch auf Bäumen NP-vollständig
ist. Für diese Variante zeigen wir, dass sie mit dem maximalen Knotengrad
als Parameter festparameter-handhabbar ist.

Zum Abschluss der Arbeit geben wir einen Überblick über die gewonne-
nen Erkenntnisse. Für die wichtigste verbleibende offene Frage, nämlich die
Festparameter-Handhabbarkeit mit der Baumweite als Parameter für Capa-
citated Vertex Cover (im allgemeinen Fall), geben wir einige mögliche
Ansätze an, die in dieser Arbeit nicht weiter untersucht worden sind.

Abstract

The NP-complete Vertex Cover problem has been intensively studied in
the field of parameterized complexity theory. However, there exists only little
work concerning important generalizations of Vertex Cover like Partial
Vertex Cover, Connected Vertex Cover, and Capacitated Ver-
tex Cover which are of high interest in theory as well as in real-world
applications. So far research was mainly focused on the approximability
of these problems. It was shown recently that, with the size of the vertex
cover as parameter, Connected Vertex Cover and Capacitated Ver-
tex Cover are both fixed-parameter tractable whereas Partial Vertex
Cover is W [1]-hard. We will study the fixed-parameter tractability of these
problems using another parameter, called the treewidth, which describes the
“tree-likeness” of the input graph. Our dynamic programming approaches
lead to exact algorithms for graph classes with small treewidth. With these
algorithms we show that Partial Vertex Cover and Connected Ver-
tex Cover are fixed-parameter tractable using treewidth as a parameter,
and that Capacitated Vertex Cover is fixed-parameter tractable with
respect to treewidth for graphs with bounded vertex degree. Additionally,
we will consider a variant of Capacitated Vertex Cover which is NP-
complete for trees. For this problem we show that it is fixed-parameter
tractable when parameterized by the vertex degree.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Overview . 6

2 Preliminaries 9
2.1 Basic Notation from Graph Theory 9
2.2 Parameterized Complexity . 10

2.2.1 Fixed-Parameter Tractability 10
2.2.2 Fixed-Parameter Intractability 12

3 Generalizations of Vertex Cover 15
3.1 Partial Vertex Cover . 15
3.2 Connected Vertex Cover . 16
3.3 Capacitated Vertex Cover . 17
3.4 Summary . 19

4 Dynamic Programming on Tree Decompositions 21
4.1 Tree Decompositions . 22
4.2 Dynamic Programming on Tree Decompositions 25
4.3 Partial Vertex Cover . 28

4.3.1 The Algorithm . 28
4.3.2 Analysis . 34

4.4 Connected Vertex Cover 35
4.4.1 The Basic Idea . 35
4.4.2 The Algorithm . 35
4.4.3 Analysis . 42
4.4.4 How to Improve the Running Time 42

4.5 Capacitated Vertex Cover 43
4.5.1 Series-Parallel Graphs 43
4.5.2 Dynamic Programming on SP-Trees 45
4.5.3 Time Complexity . 48

1

4.5.4 CVC on Tree Decompositions 49
4.6 Concluding Remarks . 52

5 Capacitated Vertex Cover on Trees 55
5.1 Definitions and Preliminaries 55
5.2 Fixed-Parameter Tractability 57

5.2.1 An Algorithm for CVCDT (NOSPLIT) 58
5.2.2 Splitting Demands . 61

6 Conclusion 63
6.1 Summary . 63
6.2 Open Problems . 64
6.3 Acknowledgments . 64

2

Chapter 1

Introduction

1.1 Motivation

The Vertex Cover problem is one of the best-studied graph problems in
theoretical computer science.

Vertex Cover is defined as follows:

Input: An undirected graph G = (V, E) and a nonnegative in-
teger k.

Question: Can we find a subset V ′ of at most k vertices such
that each edge in E has at least one of its endpoints in V ′?

In other words, if we define that a vertex covers all incident edges, then
a vertex cover is a subset of vertices that covers all edges. The Vertex
Cover problem is to decide whether there exists a vertex cover of size at
most k.

Vertex Cover has many real-world applications, e.g., in network de-
sign. For instance, monitoring a communication network by placing devices
at selected sites. Such a device can monitor the communication links inci-
dent to the site where it is located. The optimization criterion is to mini-
mize the number of devices. Obviously, this is exactly the Vertex Cover
problem [AKLSS05]. Another interesting field of application is bioinformat-
ics [AKLSS05]. Vertex Cover finds applications in the construction of
phylogenetic trees, in phenotype identification, and in analysis of microarray
data [AKCF+04].

Unfortunately, the Vertex Cover problem is NP-complete [Kar72].
This means that, unless P = NP, there is no hope for a polynomial-time
algorithm for Vertex Cover.

3

The next question is how to solve this NP-complete problem in prac-
tice. In other words, how can we deal with the presumable computational
intractability of the problem? There are several general approaches for
attacking NP-complete problems, among them approximation algorithms,
fixed-parameter algorithms, and heuristics. The first two, approximation
and fixed-parameter algorithms, are the approaches developed in theoretical
computer science to address the Vertex Cover problem.

Approximation algorithms compute (in polynomial time) non-optimal so-
lutions with a guaranteed performance. The performance of approximation
algorithms is usually measured by a factor f , where the non-optimal solu-
tion differs at most f times from the optimal solution. For instance, Vertex
Cover has a factor-2 approximation (or “2-approximation”), which means
that there exists a polynomial-time algorithm that computes a vertex set
that covers all edges with at most twice as many vertices as an optimal ver-
tex cover. This can be shown with different methods, an approach is, e.g.,
to repeatedly select an arbitrary edge of the graph, adding its endpoints to
the vertex cover and removing every edge incident to these endpoints in the
graph, until there is no edge left. Since we know that there is at least one
endpoint of each edge in a minimum vertex cover, the vertex cover obtained
with this method has at most twice the number of vertices than an optimal
solution. However, it was shown that, unless P = NP, the lower bound of
the approximation factor for Vertex Cover is 1.36 [DS02].

Another interesting and promising alternative used to compute (optimal)
solutions of NP-hard problems are fixed-parameter algorithms introduced by
Downey and Fellows [DF99]. The idea is to restrict the unavoidable expo-
nential running time of exactly solving algorithms, sometimes referred to as
“combinatorial explosion”, to a parameter, such that the problem can be effi-
ciently solved in practice as long as the parameter is small. If there exists an
algorithm with running time f(k) · nO(1), where f is a computable function
only depending on k, and n is the size of the input, then we call the problem
fixed-parameter tractable.

Vertex Cover is one of the best-studied problems concerning fixed-
parameter tractability. Many techniques in parameterized complexity, as for
instance data reduction, depth-bounded search trees, and dynamic program-
ming, were successfully applied to Vertex Cover, see e.g. in [ABF+02,
AFN04, AKCF+04, CDRC+03, CKJ01, Fel03, NR99, NR03]. Moreover,
studies of Vertex Cover even led to new research directions within pa-
rameterized complexity [AR02, CDRC+03, PS03].

Vertex Cover is fixed-parameter tractable with respect to the size k of
the vertex cover. There exists a long list of continuous improvements on the
combinatorial explosion [BFR98, CG05, CKJ01, NR99, NR03]. Beginning

4

from 1.32k [BFR98], the best bound is now below 1.28k [CG05].
Despite of the intensive studies of Vertex Cover (and also Weighted

Vertex Cover [NR03]) in the field of parameterized complexity, there ex-
ists little work dealing with parameterized complexity of the following im-
portant generalizations of Vertex Cover:

1. For Partial Vertex Cover (PVC) we want to cover a certain num-
ber of edges with at most k vertices.

2. For Connected Vertex Cover (ConVC) we require that the sub-
graph induced by the vertex cover V ′ is connected.

3. For Capacitated Vertex Cover (CVC) we assign to each vertex a
“covering capacity”, such that a vertex can cover only a certain number
of incident edges.

For formal definitions of these generalizations we refer to Section 3. These
generalizations have many applications, as for instance in wireless network
design and computational biology. So far PVC, ConVC, and CVC have
been studied intensively concerning their approximability, e.g., in [BB98,
CN02, GHK+03, GHKO03, GKS04, HS02]. They all possess polynomial-time
factor-2 approximation algorithms. Recently, Guo et al. [GNW05] initiated
the study of their fixed-parameter tractability. Considering the size k of the
desired vertex cover as parameter, they show that Partial Vertex Cover
appears to be fixed-parameter intractable, and that Connected Vertex
Cover and Capacitated Vertex Cover are fixed-parameter tractable
with combinatorial explosions 6k and 1.2k2

, respectively, which is still rela-
tively high. Here we continue their research on the parameterized complexity
of these generalizations. We aim to complement the results of Guo et al. by
analyzing Partial Vertex Cover, Connected Vertex Cover, Ca-
pacitated Vertex Cover considering another parameter. Particularly,
the fixed-parameter intractability of Partial Vertex Cover with respect
to the size of the desired vertex cover as parameter highly motivates to look
for some feasible parameterizations. There exist many meaningful parame-
ters, e.g., the maximum vertex degree, or the number of edges covered by a
partial vertex cover. The parameterization considered in this thesis is moti-
vated by the observation that all three generalizations (PVC, ConVC, and
CVC) are easy to solve on trees.1 The next logical step is to ask for the

1 This is trivial for Connected Vertex Cover, here we have to put all non-leaf
vertices into the cover set. For Capacitated Vertex Cover see Guha et al. [GHKO03],
and Partial Vertex Cover can be solved using dynamic programming on the input
tree.

5

problem’s complexity if the input graph is “almost” a tree. The parameter
in this case would be a value describing the “tree-likeness” of a graph, which
is small for graphs that are similar to trees. We use the concept of treewidth
to measure the tree-likeness. Treewidth and the corresponding notion of
tree decomposition, which describes the “tree-like structure” of a graph, were
introduced by Robertson and Seymour [RS86] and play an important role
in graph theory. Moreover, there exist several practical applications of the
notion of treewidth, such as in expert systems, telecommunications, VLSI-
design, Cholesky factorization, natural language processing, and program-
ming languages, just to name a few [Bod88b, Bod93, Bod97]. Recently, tree
decompositions with small treewidth have been successfully applied in com-
putational biology to speed up significantly the search of RNA structures in
genomes [SLM+05, XJB05].

There are several techniques to solve problems on graphs with small
treewidth. A standard technique is dynamic programming on tree decompo-
sitions [Alb03, Bod88a, Bod97, Nie06]. This technique is used for a vast num-
ber of known problems, a comprehensive list can be found, e.g., in [Bod88a].
Other techniques are for instance graph reductions for graphs with small
treewidth [BdF96] and the use of monadic second order logic [Bod97].

In this work we will use the dynamic programming on tree decomposition
technique to derive algorithms for Partial Vertex Cover, Connected
Vertex Cover, and Capacitated Vertex Cover. In particular, we
show that PVC and ConVC are fixed-parameter tractable with respect to
the treewidth. Moreover, we show that CVC is fixed-parameter tractable
with respect to the treewidth for graphs with bounded vertex degree. Also,
we examine a generalization of CVC introduced by Guha et al. [GHKO03]
which is already NP-complete for trees, and give a fixed-parameter algorithm
to solve this problem restricted to trees, parameterized by the maximum
vertex degree of the input tree.

1.2 Overview

The remaining part of this thesis is structured as follows. Chapter 2 is an
introduction to several notions we use in this thesis. In Section 2.1 we give
a short introduction to some basic notation, mainly from graph theory. We
introduce in Section 2.2 the most important definitions of parameterized com-
plexity theory, particularly fixed-parameter algorithms in Section 2.2.1 using
Vertex Cover as an example. Also, we will give a brief introduction to
parameterized reductions and fixed-parameter intractability in Section 2.2.2,
where we use Independent Set as example.

6

Chapter 3 covers the formal definitions of Partial Vertex Cover,
Connected Vertex Cover, and Capacitated Vertex Cover in more
detail. We summarize known results concerning approximability and param-
eterized complexity. Our results obtained in Chapter 4 are also stated briefly.
Moreover, we mention applications of PVC, ConVC, and CVC.

Chapter 4 is the main part of this thesis and contains several new results
for Partial Vertex Cover, Connected Vertex Cover, and Capac-
itated Vertex Cover. We introduce tree decompositions and treewidth
in Section 4.1. Then, we introduce the technique of dynamic programming
on tree decompositions in Section 4.2. This technique is used to solve PVC,
ConVC, and CVC in Sections 4.3, 4.4, and 4.5, respectively.

Chapter 5 introduces a generalized version of CVC. We study this gen-
eralization restricted to trees and we present a fixed-parameter algorithm to
solve it with respect to the maximum vertex degree as parameter.

We conclude this thesis with a short summary and present an outlook of
further work in Chapter 6.

7

8

Chapter 2

Preliminaries

This chapter summarizes some basic notations used throughout this work
and provides a brief introduction to parameterized complexity theory.

2.1 Basic Notation from Graph Theory

A graph is defined as a pair G = (V, E), where the elements of V are
called vertices of G, V := {v1, . . . , vn}, and the elements of E are called
edges, E ⊆ {{u, v} : u, v ∈ V }. We denote the set of vertices of a graph G
with V (G), and the set of edges with E(G). A vertex v ∈ V is called incident
with an edge e ∈ E if v ∈ e. Two vertices v, w ∈ V are called adjacent if
there exists an edge {v, w} ∈ E, and v and w then are called neighbors. Two
edges e, f ∈ E are called adjacent if they share a vertex, that is, e ∩ f 6= ∅.
The degree deg(v) of a vertex v is the number of incident edges.

A subgraph G′ = (V ′, E ′) of a graph G = (V, E) is a graph having V ′ ⊆ V
and E ′ ⊆ {e ∈ E : e ⊆ V ′}. We also say that G contains G′. A subgraph G′

of G is called an induced subgraph of G if every edge {u, v} ∈ E with u, v ∈ V ′

is a member of E ′. The vertex set V ′ then induces G′ in G. We write G′ =
G[V ′].

A path is a graph P = (V, E) with

V = {v1, v2, . . . , vn}, E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}

where V is a set of distinct vertices. The vertices v1 and vn are connected
by P . A path connecting two vertices u, v is denoted by Pu,v. The length of
a path is defined as the number of its edges.

A connected graph is a graph G = (V, E) such that there exists a path Pu,v

for every pair u, v ∈ V . A cycle is a graph C = (V, E) such that (V, E \ {e})

9

is a path for an arbitrary edge e ∈ E. A tree is a connected graph which
does not contain cycles.

For a more detailed introduction to graph theory we refer to [Die05].

2.2 Parameterized Complexity

The purpose of this section is to introduce the general aspects of param-
eterized complexity. Detailed information can be found in the research
monograph of Downey and Fellows [DF99]. The theoretical aspects of fixed-
parameter intractability are only stated superficially.

2.2.1 Fixed-Parameter Tractability

Parameterized complexity theory [DF99] offers a two-dimensional framework
for studying the computational complexity of problems. One dimension is
the input size n and the other dimension the parameter k. The basic concept
are parameterized problems and the notion of fixed-parameter tractability,
which are defined in the following.

Definition 2.2.1. A parameterized problem is a language L ⊆ Σ∗ × Σ∗ for
some finite alphabet Σ. For a problem instance (x, k) ∈ L, the second com-
ponent denotes the parameter.

Note that in this work, as in most publications, the parameter is a nonneg-
ative integer. However, the above definition also permits more complicated
parameters.

Definition 2.2.2. A parameterized problem is fixed-parameter tractable
(fpt) if it can be determined in f(k) · nc time whether (x, k) ∈ L, where n :=
|(x, k)| is the input size, f is a computable function only depending on k,
and c is a constant.

Fixed-parameter tractable problems are classified as FPT. Several com-
mon approaches exist to show that a problem actually is fixed-parameter
tractable, as for instance

• data reduction rules (kernelization),

• depth-bounded search trees,

• dynamic programming, and

• iterative compression.

10

Figure 2.1: Example of a graph with a vertex cover of size 5 (black vertices).
Observe that each edge has at least one of its endpoints in the cover. This
vertex cover is optimal in the sense that there is no vertex cover with fewer
than 5 vertices.

In this work we focus on the dynamic programming approach. One of
the best-studied parameterized problems is the well-known Vertex Cover
problem. In Figure 2.1 we give an example of a graph with a vertex cover
of minimum size. This problem is fixed-parameter tractable with respect to
the size of the vertex cover. There are several approaches to show that. Here
we give a short description of a simple depth-bounded search tree algorithm
with a combinatorial explosion 2k. The idea of this algorithm is simple: To
find a vertex cover of size at most k, we choose an arbitrary edge e = {a, b},
and then, since we know that at least one of a or b has to be in the vertex
cover, we distinguish two cases whether a or b is a cover vertex. For each
of these cases we choose an arbitrary uncovered edge and again distinct two
cases for choosing an endpoint to be a part of the cover, and so forth, until
we have selected k vertices. This recursive algorithm can be described with a
tree structure called a search tree. The depth of such a tree is bounded by k,
since in the k-th step of the algorithm we have chosen k vertices, so among
all these possibilities to select k vertices there must be a solution to the
problem, if such a solution exists. Obviously, the search tree has 2k leaves,
each of them representing a set of vertices, and we check whether at least
one of them covers every edge. So, we have shown that Vertex Cover is
fixed-parameter tractable with respect to the vertex cover size.

However, what can be done if it seems that the combinatorial explosion of
an NP-complete problem cannot be restricted to a certain parameter? How
can we actually show that an algorithm running in f(k) · nc time is unlikely
to be found? These questions are answered briefly in the next section.

11

Figure 2.2: Example of a graph with an independent set of size 3 (black
vertices). Observe that each black vertex has no other black vertex as neigh-
bor. This independent set is optimal in the sense that there is no other
independent set with more than 3 vertices.

2.2.2 Fixed-Parameter Intractability

Downey and Fellows [DF99] developed a formal framework to show that a
problem is fixed-parameter intractable. We begin with some basic definitions.

To show that a NP-complete problem is unlikely to be fixed-parameter
tractable, Downey and Fellows developed a completeness program similar to
the classical complexity theory. The basic concept is parameterized reduc-
tion.

Definition 2.2.3. A parameterized reduction from a parameterized prob-
lem L to another parameterized problem L′ is a function that, given an in-
stance (x, k), computes in time f(k) · nc an instance (x′, k′) such that

1. (x, k) ∈ L↔ (x′, k′) ∈ L′,

2. and k′ only depends on k,

where f is a function depending only on k, and c is a constant.

The basic complexity class for fixed-parameter intractability is W [1]. It
can be defined as the class of parameterized languages that are equivalent to
the Short Turing Machine Acceptance problem. This is the param-
eterized analogue to the Turing Machine Acceptance problem, which
defines the basic NP-complete class. The conjecture that FPT 6= W [1] is
analogous to the conjecture that P 6= NP. There are good reasons to believe
that algorithms solving W [1]-hard parameterized problems with parameter k
in f(k) · nc time are unlikely to exist [DF99].

12

The Independent Set problem is an example of a W [1]-hard (and also
W [1]-complete) problem and is closely related to Vertex Cover.
Independent Set:

Input: An undirected graph G = (V, E) and a nonnegative in-
teger k.

Question: Can we find a subset I of V of size at least k such
that I induces a subgraph of G without edges?

In Figure 2.2 we give an example of a graph with an independent set of
maximum size. It is a well-known fact that a graph has a vertex cover of
size k iff it has an independent set of size n−k (all vertices not in the vertex
cover must form an independent set, since an edge between such vertices
would not be covered). Hence, the question whether or not a graph has a
vertex cover of size k is equivalent to the question whether or not a graph has
a independent set of size n−k. However, this reduction from Vertex Cover
to Independent Set is not a parameterized reduction, since k′ = n− k is
not only depending on k but also on n (see Definition 2.2.3).

For a deeper insight in this theory we refer the reader to the monograph
of Downey and Fellows [DF99].

13

14

Chapter 3

Generalizations of Vertex Cover

Three natural generalizations of the Vertex Cover problem, namely Par-
tial Vertex Cover, Connected Vertex Cover, and Capacitated
Vertex Cover, have been intensively studied concerning their approxima-
bility. Recently, their fixed-parameter tractability with respect to the vertex
cover size as parameter has been analyzed [GNW05]. Using the treewidth
as a parameter, we study the fixed-parameter tractability of these problems
in Chapter 4. In this chapter we give the definitions of these three gener-
alizations, we provide an overview of known and new results, and we state
possible applications.

3.1 Partial Vertex Cover

Definition 3.1.1. (Partial Vertex Cover)

Input: An undirected graph G = (V, E) and two nonnegative in-
tegers k and t.

Question: Can we find a subset V ′ of V of size at most k such
that at least t edges are incident to vertices in V ′?

We abbreviate Partial Vertex Cover with PVC.

Approximation: The PVC problem is NP-complete and known to have
a factor-2 approximation [BB98, GKS04]. With d denoting the maximum
vertex degree of the input graph, an approximation factor of (2 − Θ(1/d))
was developed, e.g., in [GKS04]. The current-best approximation factor
is (2−Θ(ln ln d

ln d
)) [HS02].

15

Fixed-parameter tractability: PVC is fixed-parameter tractable with
respect to the number t of edges to be covered [Blä03]. When parameterized
by the size k of the cover, Partial Vertex Cover as well as the mini-
mization version of the problem, i.e., to cover at most t edges with at least k
vertices, are W [1]-complete [GNW05].

New results: We show in Section 4.3 that Partial Vertex Cover is
fixed-parameter tractable with the treewidth ω of the input graph as param-
eter. The running time of our algorithm is O(2ω · k · (ω2 + k) · n), where n
is the number of vertices in the input graph.

Applications: Partial Vertex Cover is closely related to facility loca-
tion. Suppose a network of cities and streets where we need to build facilities
to provide service (e.g., maintenance) to a certain fraction of the streets (due
to limited public funds). A facility in a city provides service to all outgoing
streets. We can model this as a Partial Vertex Cover problem, where
we ask which cities should be chosen to build the facilities [GKS04].

3.2 Connected Vertex Cover

Definition 3.2.1. (Connected Vertex Cover)

Input: An undirected graph G = (V, E) and a nonnegative inte-
ger k.

Question: Can we find a vertex cover V ′ of size at most k such
that G[V ′] is a connected subgraph?

We abbreviate Connected Vertex Cover with ConVC. By intro-
ducing a weight function there are two variants of ConVC, namely Tree
Cover and Tour Cover. For a given graph G with weight function
w : E → N+, an integer k ≥ 0, and a real number W ∈ R+, the Tree Cover
problem is to determine whether there exists a subgraph G′ = (V ′, E ′) of G
with at most k vertices and

∑
e∈E′ w(e) ≤ W such that V ′ is a vertex cover

on G and G′ is a tree. The unweighted version of Tree Cover is equivalent
to the Connected Vertex Cover problem. The second variant is Tour
Cover, where we require that the edges in G′ form a closed walk (where
vertices and edges can be used repeatedly).

Approximation: The ConVC problem is NP-complete and polynomial-
time approximable within factor 2, Tree Cover is approximable within

16

factor 3.55 and Tour Cover within factor 5.5 [AHH93]. The approximation
factors of Tree Cover and Tour Cover were improved to 3 [KKPS03].

Fixed-parameter tractability: The ConVC problem is fixed-parameter
tractable with respect to the vertex cover size k. Guo, Niedermeier, and
Wernicke [GNW05] show that Connected Vertex Cover can be solved
in O(6kn + 4kn2 + n2 log n + nm) time, Tour Cover in O(2kk2km) time,
and Tree Cover in O(6kk2n + 4kk2n2 + kn3) time, where n and m denote
the number of vertices and edges of the input graph, respectively.

New results: In Section 4.4 we show that ConVC is fixed-parameter
tractable with the treewidth ω of the input graph as parameter. The running
time of our algorithm is O(2ω · ω3ω+2 · n), where n is the number of vertices
of the input graph.

We remark that the connected version of Dominating Set has been
studied by Demaine and Hajiaghayi [DH05]. They show that Connected
Dominating Set can be solved for graphs with treewidth ω in O(ωω · n)
time, where n is the number of vertices of the input graph [DH05].

Applications: The Connected Vertex Cover problem occurs for in-
stance in the field of wireless network design. In a wireless network, network
nodes (vertices) are connected by transmission links (edges). To operate the
network we need to place relay stations on nodes, such that the relay stations
form a connected subnetwork and every transmission link is incident to a re-
lay station. The optimization criterion is to minimize the number of relay
stations. This is exactly the Connected Vertex Cover problem. Other
variants are for instance wireless networks with less failure vulnerability, de-
manding that the failure of a relay station does not destroy the connectivity
of the relay station network [Gro05]. The Tree Cover and Tour Cover
problems are motivated by their close relation to Vertex Cover, Watch-
man Route, and Traveling Purchaser [AHH93, KKPS03].

3.3 Capacitated Vertex Cover

Definition 3.3.1. A capacitated graph consists of a graph G = (V, E) and
a capacity function c : V → N+ which assigns an integer c(v) ≥ 1 as v’s ca-
pacity to each vertex v. Given a vertex cover C of a graph G = (V, E), we
call C a capacitated vertex cover (cvc) if there exists an assignment which
assigns each edge in E to one of its endpoints, such that the number of edges
assigned to any vertex v ∈ V does not exceed c(v).

17

Definition 3.3.2. (Capacitated Vertex Cover)

Input: A capacitated graph G = (V, E), a nonnegative integer k,
a vertex weight w : V → R+, and a positive real number W .

Question: Can we find a capacitated vertex cover C of size at
most k such that

∑
v∈C w(v) ≤ W?

We abbreviate Capacitated Vertex Cover with CVC. There exist
two variants of this problem which allow using multiple copies of a vertex.
That is, if we use d copies of a vertex v with capacity c(v), then v can cover
up to d · c(v) edges. We differentiate between Soft Capacitated Vertex
Cover (Soft CVC), where the number of allowed copies of a vertex is
not restricted, and Hard Capacitated Vertex Cover (Hard CVC),
where the number of allowed copies of a vertex is restricted for each vertex
individually.

Approximation: The CVC problem was introduced by Guha, Hassin,
Khuller, and Or [GHKO03]. They show that this problem is NP-complete
and approximable within factor 2. They also studied several generalizations,
as well as the problem restricted to trees. The unweighted version of Hard
CVC is significally harder so solve than CVC. Chuzhoy and Naor [CN02]
developed a factor-3 approximation for Hard CVC. They also showed that
the weighted version of Hard CVC is as least as hard to approximate as
Set Cover. Gandhi et al. [GHK+03] improved the approximation factor for
unweighted Hard CVC to 2.

Fixed-parameter tractability: CVC is fixed-parameter tractable with
respect to the vertex cover size k and can be solved in O(1.2k2

+ n2) time
and has a problem kernel of size O(4k · k2) [GNW05].

New results: In Section 4.5 we give an algorithm that solves CVC in
time O(k2ω · ω · n), where ω and n denote the treewidth and the number
of vertices of the input graph, respectively. This algorithm also shows that
the problem is fixed-parameter tractable for graphs with bounded vertex
degree d when parameterized by the treewidth of the input graph. Then the
running time can be expressed as O(d2ω · ω · n). However, it remains open
whether CVC on general graphs is fixed-parameter tractable with respect to
treewidth.

18

Applications: The CVC problem has an interesting application in bioin-
formatics. Guha et al. [GHKO03] refer to Glycodata1, a company research-
ing in the areas of glycobiology and bioinformatics. One of its projects is
a chip-based technology called GMID (Glycomolecule ID) which is used to
uniquely identify glycomolecules in a given liquid solution. In a simplified
view, such glycomolecules consist of building blocks. Methods to identify
these building blocks exist. However, in order to identify a glycomolecule
it is necessary to determine the connectivity of the building blocks. The
GMID chip determines in a single application for a building block A and
a set of building blocks S, whether A is connected to B for each building
block B ∈ S. The size of S is limited due to technical reasons. To plan
an experiment to identify a glycomolecule, the necessary information can be
represented as a capacitated graph, where the building blocks are vertices
with capacity |S|, and an edge exists between two vertices if the information
about their connectivity is required. The problem of minimizing the number
of chip applications is exactly the Capacitated Vertex Cover problem
with uniform capacities.

Interesting Generalizations: Guha et al. [GHKO03] also considered a
generalization of Capacitated Vertex Cover, the so-called Minimum
Capacitated Vertex Cover with Demand (CVCD) problem, and
showed that CVCD is NP-complete on trees. In Section 5 we summarize
the results from Guha et al. [GHKO03], and for one NP-complete variant of
CVCD we give an algorithm that shows that it is fixed-parameter tractable
with the maximum vertex degree as parameter.

3.4 Summary

Interestingly, Partial Vertex Cover, Connected Vertex Cover,
and Capacitated Vertex Cover all behave more or less in the same way
from the viewpoint of polynomial-time approximability, as all have factor-
2 approximations. However, the picture becomes completely different from
a parameterized complexity point of view: Parameterized by the solution
size k, Partial Vertex Cover appears to be fixed-parameter intractable,
whereas Connected Vertex Cover and Capacitated Vertex Cover
are fixed-parameter tractable. In the next chapter, we attack these gener-
alizations from another parameterized complexity point of view, where the
parameter is the treewidth of the given input graph.

1http://www.glycodata.com

19

20

Chapter 4

Dynamic Programming on
Tree Decompositions

In Chapter 3 we introduced Partial Vertex Cover (PVC), Connected
Vertex Cover (ConVC), and Capacitated Vertex Cover (CVC).
When these problems are parameterized by the size k of a minimum solution,
then CVC and ConVC are fixed-parameter tractable while PVC is W [1]-
complete.

In this chapter we study the parameterized complexity of these problems
with respect to treewidth, a parameter which describes the tree-likeness of a
graph. Parameterized by the treewidth ω of a given n-vertex graph, we show
that

• Partial Vertex Cover is fixed-parameter tractable and can be
solved in O(2ω · k · (ω2 + k) · n) time (Section 4.3),

• Connected Vertex Cover is fixed-parameter tractable and can be
solved in O(2ω · ω3ω+2 · n) time (Section 4.4), and

• Capacitated Vertex Cover is fixed-parameter tractable for graphs
with bounded vertex degree d and it can be solved in O(d2ω · ω · n)
time (Section 4.5).

Moreover, we show that CVC can be solved in O(k2ω · ω · n) time (Sec-
tion 4.5). The algorithms to solve these problems use a technique called
dynamic programming on tree decompositions.

This chapter is organized as follows. First, we give an introduction to
treewidth and the underlying concept of tree decomposition. After that, we
describe the technique of dynamic programming on tree decompositions. Us-
ing this technique, we present the algorithms for PVC and ConVC which

21

lead to the results stated above. The subsequent studies of CVC are divided
into two parts. First, we give an algorithm to solve CVC on graphs with
treewidth at most two, then we generalize this approach to obtain an algo-
rithm for CVC for graphs with treewidth ω. With this general approach we
can also show that CVC is fixed-parameter tractable with treewidth as a
parameter for graphs with bounded vertex degree.

4.1 Tree Decompositions

The concept of tree decompositions for graphs was introduced by Robertson
and Seymour [RS86] and plays an important role in algorithmic graph the-
ory. In this section we give an introduction to tree decomposition, treewidth,
and nice tree decomposition. These notions are needed for the dynamic pro-
gramming on tree decompositions.

Tree decompositions are motivated by the observation that many NP-
complete problems are easy to solve on trees. We are then interested how
such problems can be solved for graphs that are similar to trees. Tree decom-
positions are a formal way to describe the “tree-likeness” of a given graph.

Definition 4.1.1. (Tree Decomposition)
Given a graph G = (V, E), a pair ({Xi : i ∈ I}, T) is called a tree decompo-
sition, where each Xi ⊆ V is called a bag, and T = (I, F) is a tree with the
elements of I as nodes. The following three properties must hold:

1.
⋃

i∈I Xi = V ,

2. for every edge e ∈ E there exists a bag Xi with i ∈ I and e ⊆ Xi, and

3. for all i, j, k ∈ I, if j lies on the path from i to k in T then Xi∩Xk ⊆ Xj.

The third property is equivalent to the requirement that, for each v ∈ V , the
nodes of all bags containing v induce a subtree of T .

Observe that the size of the bags is influenced by the given graph G: For
a tree, there exists a tree decomposition where the size of each bag equals
two. Such a tree decomposition consists of a node i for each edge ei of the
tree, each bag only contains both vertices incident to ei, and two nodes i, j
are adjacent in the decomposition tree if ei ∩ ej 6= ∅. In contrast, a clique Kn

of n vertices has minimum bag size n. The corresponding tree decomposition
consists of only one node whose corresponding bag contains all n vertices
of Kn (due to property (3) of Definition 4.1.1). A similar observation is that
a graph containing a complete size-k subgraph G′ has bags of size at least k
since there has to exist a bag containing all vertices of G′. Loosely speaking,

22

1

2

3

4

5

6

7

8

9

10

11

12

1 5
6

1 6
7

2 6
7

2 3
7

3 7
8

3 4 3 8
9

6 7
10

7 10
11

10 11
12

Figure 4.1: Example of a graph G and a corresponding tree decomposi-
tion ({Xi : i ∈ I}, T). It is optimal in the sense that there is no tree decom-
position for G such that every bag contains fewer than three vertices. Observe
that the properties of tree decompositions as stated in Definition 4.1.1 hold.

bags are smaller if the given graph is more “tree-like”. This idea leads to the
following definition of treewidth.

Definition 4.1.2. (Treewidth)
The width of a tree decomposition ({Xi : i ∈ I}, T) is defined as

max{|Xi| : i ∈ I} − 1.

The treewidth of a graph G is defined as the minimum width over all tree
decompositions of G.

Thus, a tree has treewidth 1 and a clique Kn has treewidth n−1. In Fig-
ure 4.1 we give an example of a graph and a tree decomposition of width 2.
The concept of treewidth measures how tree-like a given graph is. However,
it is not trivial to compute a tree decomposition for a given graph. A limiting
factor of the dynamic programming technique using tree decompositions is
the construction of tree decompositions of small width. Given an n-vertex
graph G and an integer ω, the problem to determine whether the treewidth
of G is at most ω is NP-complete [ACP87]. However, if the parameter ω
is a fixed constant, then the problem can be decided in time O(2Θ(ω3) · n),

23

and a corresponding tree decomposition can be constructed within the same
running time [Bod96]. The drawback of this result is the constant factor
of 2Θ(ω3). For this reason several different approaches to compute tree decom-
positions were developed, for instance heuristic algorithms [KBH02], graph
reduction [ACPS93], parallel processing [BH98], and approximation algo-
rithms (see, e.g., [BGHK95, Ree92, DHT02]). Especially for small values
of ω (2, 3, or 4) there exist efficient linear time algorithms based on graph
reduction [AP86, San96].

For this thesis it is important that the problem to determine whether
the treewidth of a graph is at most ω is fixed-parameter tractable with re-
spect to treewidth [Bod96], and that a tree decomposition can be constructed
in f(ω) · nO(1) time, where f is a function only depending on ω, and n is the
number of vertices of the input graph.

For the description of tree decomposition based algorithms it is convenient
to use a nice tree decomposition, which has a particularly simple structure.
Each node of such a nice tree decomposition has a type with certain proper-
ties, which makes the use of such a nice tree decomposition easier. For the
following definition of nice tree decompositions we define a binary tree in the
sense that we only allow vertices of degree one, two, and three.

Definition 4.1.3. (Nice Tree Decomposition)
A nice tree decomposition ({Xi : i ∈ I}, T) for a graph G = (V, E) is a tree
decomposition for G with the following properties.

• T is rooted at a designated node r ∈ I, called root node.

• T is a binary tree.

• The nodes of T are of one of the following four node types:

1. Leaf nodes i which have no children and the corresponding leaf
bags Xi have |Xi| = 1.

2. Introduce nodes i which have one child j with Xi = Xj ∪ {v} for
some vertex v ∈ V .

3. Forget nodes i which have one child j with Xj = Xi ∪ {v} for
some vertex v ∈ V .

4. Join nodes i which have two children j, l ∈ I with Xi = Xj = Xl.

Introduce, forget, and join nodes are called inner nodes. In Figure 4.2 we give
an example of a nice tree decomposition for the graph shown in Figure 4.1.
We can easily construct a nice tree decomposition from a tree decomposition
as stated in the following lemma.

24

root

2 3
7

2 3
7

2 3
7

3 7 3 7
8

3 7
8

3 7
8

3 7

3 8

3

3 8
9

3 4

3 9

3

9

2 7 . . .

J

I F J

I I F I L

I F I I L

Figure 4.2: A part of a nice tree decomposition of the graph in Figure 4.1.
Each node is marked with a letter denoting the node type: Leaf node (L),
Introduce node (I), Forget node (F), and Join node (J).

Lemma 4.1.1. [Klo94, Lemma 13.1.3] Given a tree decomposition for an
n-vertex graph G that has O(n) nodes and width ω,1 we can find a nice tree
decomposition of G that has O(n) nodes and the same width ω in time O(n).

Note that nice tree decompositions do not provide more algorithmic possibil-
ities. Rather, they make the description of dynamic programming algorithms
easier. Therefore, we use nice tree decompositions to describe the technique
of dynamic programming on tree decompositions in the next section.

4.2 Dynamic Programming on Tree Decom-

positions

We apply the concept of tree decomposition to design algorithms using the
tree-like structure of a given graph. The usual approach of tree decomposi-
tion based algorithms is dynamic programming. In the following we give an
introduction to this technique applied to nice tree decompositions. We use
this technique in Sections 4.3 and 4.4 to show fixed-parameter tractability
with treewidth as parameter for Partial Vertex Cover and Connected
Vertex Cover. Using the same technique, we show in Section 4.5 that
Capacitated Vertex Cover is fixed-parameter tractable with respect to
treewidth for graphs with bounded vertex degree.

First, we introduce some basic notation used to describe the dynamic
programming on a nice tree decomposition. Given a graph G and a nice
tree decomposition ({Xi : i ∈ I}, T) for G with treewidth ω which is rooted
at node r ∈ I, we want to solve a problem on G (as for instance Vertex

1 Note that for an n-vertex graph G that has treewidth ω there always exists a tree
decomposition of width ω that has O(n) nodes [Klo94, Lemma 2.2.5].

25

3 7
8

3 7
8

3 8 3 8
9

3 9 9

. . .

root

9

3

9

3 8

9

3 8

9

3

7

8

9

3

4

7

8

9

Figure 4.3: A small part of our nice tree decomposition (see Figure 4.2),
together with the corresponding graph Gi for each node i.

Cover). Let T [i] denote the subtree rooted at node i. We assign each
node i ∈ I the subgraph

Gi = (Vi, Ei) := G[
⋃

j∈T [i]

Xj].

Note that Gr corresponds to the whole input graph G. In Figure 4.3 we give
an example of subgraphs Gi assigned to nodes i of a nice tree decomposition.
It is an interesting property of such a subgraph Gi that paths from vertices
in Gi to vertices not in Gi always contain vertices in Xi. This fact is formally
described with the notion of separator.

Definition 4.2.1. Given a connected graph G = (V, E), a separator of G is
a subset S ⊆ V such that the induced subgraph G[V \ S] is not connected.

The following lemma shows that the property of Gi described above holds.

Lemma 4.2.1. [Die05, Lemma 12.3.1.] Given a nice tree decomposition for
a connected graph G = (V, E), each non-leaf bag Xi is a separator of G.

As one consequence, while solving some problem on a graph G, we can
process G[Vi \Xi] independently from G[V \ Vi] if we fix the solution in Xi.
Once we computed all solutions on Gi for a node i, we can reuse them to
compute solutions on Gj, where j is the parent node of i. The idea of dynamic
programming on tree decompositions is to use tables Ai for each bag Xi to
represent feasible solutions on Gi. A table Ai for an inner node i is computed
using the graph G[Xi] and the information of the tables corresponding to the
child(ren) of i. The tables are computed in a bottom-up manner from the
leaves to the root. The entries of the root table then represent possible
solutions to the problem on Gr = G. The following example of dynamic
programming on a nice tree decomposition for Vertex Cover will point
this out.

26

Table description: In the table description we define the tables used for
the dynamic programming on a nice tree decomposition.

Example. Suppose that we want to solve Vertex Cover on G with a
given nice tree decomposition ({Xi : i ∈ I}, T). We use for each tree node i
a table Ai that has 2|Xi| rows corresponding to all possible configurations of
whether or not a vertex in Xi is chosen as cover vertex. For each configuration
we store the size of a vertex cover on Gi in the corresponding table entry such
that the vertex cover has minimum size assuming the given configuration. In
other words, each configuration represents a vertex cover on Gi, and the
corresponding entry tells us how many cover vertices it needs.

Next, we have to describe how the table entries are computed for each
table. In the following we describe the necessary steps of such a dynamic
programming.

Initialization step: In this step we compute the tables for the leaf nodes.

Example (continued). Table Ai of each leaf node i is computed as follows:
We verify for each possible configuration in Ai whether it represents a vertex
cover on Gi = G[Xi]. If so, we store the size of the cover in the corresponding
table entry. If not, we store a special value denoting that the corresponding
configuration is “invalid ”(that is, not every edge in Gi is covered).

After computing the tables of the leaf nodes, we have to compute the tables
for the inner tree nodes. We refer to this as updating process.

Updating process: Recall that we are working on nice tree decompo-
sitions. We distinguish introduce, forget, and join nodes to compute the
tables Ai for the inner nodes i. (Typically, the processing of the join nodes
is more cost-expensive than for the other node types since this computation
involves two child tables instead of only one.) Here we give an example for
computing Ai for a join node, using again the Vertex Cover problem.
The computation for the other node types is not exemplified here.

Example (continued). Suppose that i is a join node with children j and l.
The entries for each configuration in Ai are computed by looking up the two
entries of Aj and Al of the same configuration, i.e, with the same vertex cover
on G[Xi]. So for each configuration we possess the size sj of a vertex cover
on Gj and the size sl of a vertex cover on Gl. To compute the corresponding
entry in Ai, we add sj and sl and subtract the number of cover vertices in Xi,
since this number is already counted in sj and sl. If sj or sl is invalid, then
the corresponding entry of Ai is set to “invalid”.

27

Solution: We observe the entries of the root table and verify whether there
is an entry that corresponds to a solution to the problem.

Example (continued). To get a solution to the Vertex Cover problem,
we have to look up an entry of the root table with minimum value. This
value is the size of a minimum vertex cover on the input graph. If the value
does not exceed the maximum vertex cover size k, then the algorithm returns
“YES-Instance”; otherwise, “NO-Instance”.

This concludes our example of the technique of dynamic programming
on a nice tree decomposition. The next section gives an algorithm to solve
Partial Vertex Cover using this technique.

4.3 Partial Vertex Cover

We saw how the dynamic programming technique can be used to solve Ver-
tex Cover. Using the same technique, we address Partial Vertex
Cover (PVC) in this section. First, we will give a dynamic programming
algorithm to solve PVC in Section 4.3.1. After that, we conclude with the
analysis of its running time in Section 4.3.1, showing that PVC can be solved
in O(2ω · k · (ω2 + k) · |I|) time, where k denotes the maximal size of the de-
sired partial vertex cover, and ω and |I| denote the treewidth and the number
of nodes of the nice tree decomposition, respectively. This means that PVC
is fixed-parameter tractable when parameterized by the treewidth.

4.3.1 The Algorithm

Given is an instance of Partial Vertex Cover (PVC), that is, a graph G
and integers k ≥ 0 and t ≥ 0, where k is the maximal size of the cover, and t
is the minimum number of edges to be covered, and a nice tree decompo-
sition ({Xi : i ∈ I}, T) for G of width ω. We give a dynamic programming
algorithm which computes the maximum number t′ of edges covered by a
partial vertex cover of size at most k. If t′ ≥ t, the algorithm returns that
the instance is a “YES-instance”; otherwise, it is a “NO-instance”. As in the
example for Vertex Cover in Section 4.2 we use tables for the dynamic
programming on the nice tree decomposition. Remember the definition of
a graph Gi = (Vi, Ei) for each node i of the nice tree decomposition (see
page 4.2).

The difference of PVC compared to VC is the following. In the case
of VC in Section 4.2, we computed in each row of the table the size of an
optimal vertex cover on Gi assuming the corresponding configuration. In

28

the case of PVC, the problem is to decide how many vertices in Gi to use
as cover vertices in order to cover a optimal number of edges (assuming the
corresponding configuration). However, we cannot know which number of
cover vertices in Gi is optimal such that the overall solution covers at least t
edges with at most k vertices, assuming a given configuration of whether or
not a vertex in Xi is a part of the cover. The main idea for the following
algorithm is to let the number of cover vertices in Vi \Xi be a part of each
configuration.

Table description: We define for each node i of the nice tree decomposi-
tion a table Ai that has 2|Xi| · k rows corresponding to all possible configura-
tions of whether or not a vertex Xi is a part of the cover, and of how many
vertices in Vi \Xi are a part of the cover. For each configuration we store the
maximum number of covered edges in Gi in the corresponding table entry.

Unlike in the example of Vertex Cover, we describe the tables in more
detail as we want to state the algorithm more formally. Therefore, we need a
concept to represent the configurations corresponding to each row of a table.
For this reason we introduce 2-colorings to the vertices in a bag Xi, where
color “1” specifies that a vertex is a part of the cover, and color “0” specifies
that it is not a part of the cover.

Definition 4.3.1. Suppose a bag Xi = {v1, . . . , vni
} and assume that the

vertices are ordered by their indices. A 2-coloring c of Xi is a vector

c = (c1, c2, . . . , cni
) ∈ {0, 1}ni ,

such that vertex vj has color cj for all 1 ≤ j ≤ ni. We write c(vj) to denote
the color of vertex vj in 2-coloring c.

In the dynamic programming, such 2-colorings for a bag have to be combined
with other 2-colorings. We define the corresponding operation formally in the
following. Given are two disjoint vertex sets V and W and two correspond-
ing 2-colorings cV ∈ {0, 1}|V | and cW ∈ {0, 1}|W |. We assume that the vertices
of V ∪W are ordered such that every vertex of V has a smaller index than any
vertex of W (which is always possible since the vertices in a bag can be renum-
bered accordingly). Suppose that cV = (c1, . . . , c|V |) and cW = (c′1, . . . , c

′
|W |).

The concatenation cV × cW ∈ {0, 1}|V |+|W | of cv and cw is defined a 2-coloring

(c1, . . . , c|V |, c
′
1, . . . , c

′
|W |).

Given a 2-coloring c ∈ {0, 1}|V | of V and a color d ∈ {0, 1}, we write #d(c)
to denote the number of vertices in V with color d.

29

Now, using a 2-coloring for each row, the table Ai for node i of the nice tree
decomposition with bag Xi = {x1, . . . , xni

} looks as follows.

x1 x2 . . . xni−1 xni
d mi

0 0 . . . 0 0 0
0 0 . . . 0 0 1

...
...

0 0 . . . 0 0 k
0 0 . . . 0 1 0
0 0 . . . 0 1 1

...
...

1 1 . . . 1 1 k − 1
1 1 . . . 1 1 k

Each row of this table represents a 2-coloring of the vertices in the first ni

columns. An integer value in column “d” denotes the number of cover vertices
in Vi \Xi. Column mi is a mapping

mi : {0, 1}ni × N0 → N0 ∪ {−∞}

and stores a maximum number of covered edges in Gi for each configuration.
The value “−∞” can be interpreted as invalid, which means that the sub-
graph G[Vi \Xi] contains less than d vertices and thus, there cannot be any
cover with exactly d vertices from Vi \Xi.

The first step is to describe how to compute the tables for the leaf nodes
(initialization step).

Initialization step: For each leaf node i assume that Xi = {x}. Table Ai

is computed as follows. For each coloring c ∈ {0, 1} of vertex x and each
number d ∈ {0, . . . , k} set

mi(c, d) :=

{
0, if d = 0

−∞, otherwise

This assignment is correct since leaf nodes have no children, i.e., Xi = Vi,
and since there are no edges in G[Xi] (Xi only contains one vertex).

After this initialization step we compute the tables for the inner nodes in
the updating process.

Updating process: We state for each node type how to compute table Ai

for an inner node i.

30

Forget nodes: Let i be a forget node with child j. Assume that Xi =
{x1, . . . , xni

} and Xj = {x1, . . . , xni
, x}.

Loosely speaking, we have to decide for each configuration in Ai (which
represents a partial vertex cover on Gi) whether x should be a cover vertex
or not such that the corresponding table entry is maximal. For each of these
two cases (x in the cover/not in the cover) we retrieve both corresponding
entries of table Aj to compute a maximum value.

Formally, we compute

mi(c, d) := max{mj(c× {0}, d), mj(c× {1}, d− 1)}

for each 2-coloring c ∈ {0, 1}ni and each d ∈ {0, . . . , k}. This computation is
correct, since the two partial vertex covers on Gj represented by (c× {0}, d)
and (c× {1}, d− 1) are the only candidates for the partial vertex cover on Gi

represented by row (c, d) due to the following reasons. Clearly, the vertices
in Xi have to be colored equally in Ai and Aj, so we have to fix the coloring c.
Concerning the value of d and the color of x observe the following: If x is
not a cover vertex, then the number of cover vertices in Vi \Xi is the same
as the number of cover vertices in Vj \Xj, so we retrieve row (c× {0}, d). If
the vertex x is a cover vertex, then we have one more cover vertex in Vi \Xi

as compared to Vj \Xj, so we retrieve row (c× {1}, d− 1). We take the
maximum over both corresponding entries of table Aj, since we require that
the new entry of table Ai in row (c, d) represents a partial vertex cover on Gi

with a maximum number of covered edges. See Figure 4.4 for an example
of this step showing the computation of a row in Ai. Note that we only
set mi(c, d) := −∞ if both mj(c×{0}, d) and mj(c×{1}, d−1) equal “−∞”.
(We assume that “−∞” is the smallest element.)

Introduce nodes: Let i be an introduce node with child j. Assume
that Xi = {x1, . . . , xnj

, x} and Xj = {x1, . . . , xnj
}.

Loosely speaking, for each configuration in Ai, which represents a partial
vertex cover C on Gi, we have to look up the maximum number of edges
covered by C on Gj using table Aj, adding the edges that are additionally
covered in Gi due to vertex x.

Formally, for each 2-coloring c ∈ {0, 1}nj and each 2-coloring a ∈ {0, 1}
of vertex x, we compute the number na of covered edges in G[Xi] with x as
one endpoint, and we compute for each d ∈ {0, . . . , k}

mi(c× a, d) := mj(c, d) + na.

The correctness of this computation can be seen considering the following.

• The partial vertex cover on Gj represented by row (c, d) in Aj is
the only candidate for the partial vertex cover on Gi represented by

31

Xj

a1)

2

3

4

7

8

9

Xj

a2)

2

3

4

7

8

9

Xi

a)

2

3

4

7

8

9

Aj
2 3 7 d mj

0 0 0 0 0
...

a1) 1 0 0 2 6
...

a2) 1 1 0 1 7
...

1 1 1 2 7

Ai
2 7 d mi

0 0 0 0
...

a) 1 0 2 7
...

1 1 2 7

Figure 4.4: Example of the dynamic programming step for PVC in the case
of a forget node i with child j. The interesting rows are denoted by letters.
For each letter we show the corresponding graph at the top of the figure. To
compute row a we have to choose among rows a1 and a2. The rows a1 and a2

both represent solutions with two cover vertices in Vi \Xi. Here, row a2

represents a solution covering more edges, so we choose value “7” of row a2.

row (c× a, d) in Ai due to the following reasons: Clearly, the vertices
of Xj have to be colored equally in Ai and Aj, so we can fix the col-
oring c. Since Vi \Xi = Vj \Xj, the number d of cover vertices has to
be the same in the corresponding rows of table Ai and Aj.

• The value na has to be added to mj(c, d), since the edges with x as
one endpoint covered by the partial vertex cover on Gi represented by
row (c× a, d) in Ai are not counted in mj(c, d).

Join nodes: Let i be a join node with children j and l. Assume that Xi =
Xj = Xl = {x1, . . . , xni

}.
Loosely speaking, since Xi = Xj = Xl, we only have to select for each

coloring c ∈ {0, 1}ni of Xi the best pair of table entries of table Aj and Al

with the same 2-coloring, satisfying the constraint that exactly d vertices of
the subgraph G[Vi \Xi] are in the cover.

Formally, for each 2-coloring c ∈ {0, 1}ni of Xi and each d ∈ {0, . . . , k} we
compute an interim value, which is the number of edges covered by a partial

32

vertex cover represented by (c, d), but counting the covered edges in G[Xi]
twice. This interim value is computed by

m′
i(c, d) := max

0≤dj≤d
(mj(c, dj) + ml(c, d− dj)).

Since covered edges in G[Xi] are counted both in mj(c, dj) and ml(d− dj),
we have to subtract their number in order to avoid counting them twice. For
that reason we compute

nc := Number of edges in G[Xi] covered, assuming 2-coloring c,

and we get the correct maximum number of covered edges of a partial vertex
cover on Gi represented by row (c, d) by computing

mi(c, d) := m′
i(c, d)− nc.

For the correctness of this computation observe the following: Obviously, the
vertices of Xi = Xj = Xl have to be colored equally in Ai, Aj, and Al, so c
has to be fixed. Concerning the value d, it is clear that, in order to obtain a
partial vertex cover on Gi with exactly d cover vertices in Vi \Xi, we have to
combine partial vertex covers on Gj and Gl, such that the number of cover
vertices in Vj \ Xj and Vl \ Xl is exactly d in total. By trying all possible
combinations for 0 ≤ dj ≤ d we find a partial vertex cover on Gi covering a
maximum number of edges.

Combinations of rows (c, dj) and (c, d− dj) are only used if both entries
are valid, otherwise the sum mj(c, dj) + ml(c, d − dj) equals “−∞”. If all
possible combinations of rows (c, dj) and (c, d− dj) are invalid, then there is
no possibility to have exactly d vertices of G[Vi \Xi] in the cover, so mi(c, d)
is set to “−∞” (see also the description for forget nodes).

Solution: Let r be the root node of the nice tree decomposition. To obtain
the solution, we look at every possible configuration in table Ar and verify
if it represents a partial vertex cover that covers at least t edges with at
most k cover vertices. If there is no such configuration, then the algorithms
returns “NO-Instance”, else, it returns “YES-Instance”. In other words, we
retrieve all rows (c, d) in Ar, and for every row we compute the number
of cover vertices of the corresponding cover by counting the number #1(c)
of cover vertices in Xr and adding the number of cover vertices in V \Xr.
Additionally we check the constraint that the number of covered edges must
be at least t.

Formally, we compute

S := {mr(c, d) : c ∈ {0, 1}nr ∧ #1(c) + d ≤ k ∧ mr(c, d) ≥ t}

33

and return “YES-Instance” if S 6= ∅ and “NO-Instance” otherwise. This
concludes the description of our algorithm.

4.3.2 Analysis

The correctness of the algorithm in Section 4.3.1 follows from the correctness
of each step in the dynamic programming on the nice tree decomposition.
The running time is stated in the following.

Theorem 4.3.1. The algorithm in Section 4.3.1 solves Partial Vertex
Cover on a given graph G with nice tree decomposition ({Xi : i ∈ I}, T)
in O(2ω · k · (ω2 + k) · |I|) time, where |I| is the number of nodes of the nice
tree decomposition and ω the treewidth.

Proof. Each table has O(2ω · k) rows and O(ω) columns. Note that each row
can be accessed in constant time, since the position of a row can be easily
computed when coloring c and value d are given (for instance using indirect
addressing). Thus for each node type we have the following running times.

Leaf node: The table for each leaf node can be computed in O(2ω · k) time
since for each row (c, d) we just have to set the value for mi(c, d) de-
pending on d.

Forget node: The table for each forget node can be computed in O(2ω · k)
time, since for each row we have to look up exactly two rows of the
child table.

Introduce node: The table for each introduce node can be computed in
time O(2ω · k · ω), since for each row we have to determine the number
of covered edges in G[Xi] incident to the new vertex which is bounded
from above by ω.

Join node: The table for a join node can be computed in O(2ω · k · (ω2 + k))
time, since for each row of table Ai we have to search the best com-
bination of rows of tables Aj and Al, which takes O(k) time, and we
have to subtract the number of covered edges counted twice which is
bounded from above by ω2.

Thus, the worst-case running time is O(2ω · k · (ω2 + k) · |I|). This concludes
the proof of Theorem 4.3.1.

Theorem 4.3.1 shows that the Partial Vertex Cover problem is fixed-
parameter tractable when the problem is parameterized by the treewidth of
the input graph.

34

In the next section we address the Connected Vertex Cover problem
using also dynamic programming on a nice tree decomposition.

4.4 Connected Vertex Cover

In this section we show that Connected Vertex Cover is fixed-parameter
tractable with respect to treewidth as parameter. The same parameterization
has been considered for Connected Dominating Set by Demaine and
Hajiaghayi [DH05]. We first give an introduction to the general idea that
leads to our approach. After that, we give an algorithm to solve ConVC
using dynamic programming on a nice tree decomposition in Section 4.4.2.
In Section 4.4.3 we show that this algorithm runs in O(2ω · ω3ω+2 · |I|) time,
where ω and |I| denote the treewidth and the number of nodes of the nice tree
decomposition, respectively. This means that ConVC is fixed-parameter
tractable when parameterized by the treewidth of the input graph.

4.4.1 The Basic Idea

We use the concept of dynamic programming on tree decompositions as in-
troduced in Section 4.2. Recall that in the example for Vertex Cover we
used tables Ai for each node i, where each row corresponds to a vertex cover
on the subgraph Gi. How do we have to modify the tables such that its
entries can represent a connected vertex cover? The idea is to annotate for
every cover vertex in a bag Xi to which other cover vertices in the bag Xi it is
connected by a path of cover vertices in the subgraph Gi. Loosely speaking,
this enables us to know which cover vertices form connected components,
and which configurations of the root table represent a connected cover. To
denote which vertices are in the same connected component, we introduce
groups of vertices in a bag. Cover vertices in Xi are in the same group only if
they are connected via paths of cover vertices in Gi. Non-cover vertices are
in an arbitrary group. Then, after the dynamic programming, we look up all
configurations in the root table that represent a connected vertex cover, i.e.,
that all cover vertices in the root bag are in the same group.

We will use this concept of groups in the following description of the
algorithm.

4.4.2 The Algorithm

Given is an instance of Connected Vertex Cover, that is, a graph G
and a integer k ≥ 0, and a nice tree decomposition ({Xi : i ∈ I}, T) for G of

35

1 1 2 2 3 3 4 2 Xi

Vi \Xi

Figure 4.5: This example shows a graph Gi associated with a bag Xi. Cover
vertices have a thicker boundary. The number in each vertex v ∈ Xi is the
value of g(v), such that g is a correct group coloring.

width ω. We give a dynamic programming algorithm which computes the
size k′ of a minimum connected vertex cover. If k′ ≤ k, the algorithm returns
that the instance is a “YES-Instance”; otherwise, it returns “NO-instance”.

As in Section 4.3 each node i of the nice tree decomposition is assigned
the graph Gi = G[

⋃
j∈T [i] Xj] where T [i] denotes the subtree rooted at node i.

Like in the example for Vertex Cover in Section 4.2 we use tables to
describe our algorithm.

Table description: We define for each node i of the nice tree decompo-
sition a table Ai in which rows correspond to all possible configurations of
whether or not a vertex Xi is a cover vertex, and group membership.

To describe the tables in more detail we reuse the concept of 2-coloring
(Definition 4.3.1). However, we also need to describe the groups to which
the vertices of a bag belong. For this reason we introduce group colorings.

Definition 4.4.1. Each vertex of a bag Xi is assigned a group color, where
a group color is an element of {1, . . . , ω}. Vertices with the same group color
belong to the same group. Suppose that Xi = {v1, . . . , vni

}, and assume that
the vertices are ordered by their indices. A group coloring g for Xi is a vector

g = (g1, . . . , gni
) ∈ {1, . . . , ω}ni ,

such that each vertex vj is member of group gj for all 1 ≤ j ≤ ni. We
write g(vj) to denote the group color of vertex vj in the group coloring g.

If a group coloring complies with the requirement that cover vertices are
in the same group only if there exists a path of cover vertices in Gi connecting
them, then we call it correct, otherwise we call it incorrect. See Figure 4.5
for an example of a correct group coloring. Without defining it explicitly, we
also use a concatenation of group-colorings, which is defined analogously as
for 2-colorings (see Section 4.3).

36

Now, using a 2-coloring and a group coloring for each row, the table Ai for
node i of the nice tree decomposition with bag Xi = {x1, . . . , xni

} looks as
follows.

x1 x2 . . . xni−1
xni

mi

(0, 1) (0, 1) . . . (0, 1) (0, 1)
(0, 1) (0, 1) . . . (0, 1) (0, 2)

...
...

...
...

...
(0, 1) (0, 1) . . . (0, 1) (0, ω)
(0, 1) (0, 1) . . . (0, 2) (0, 1)
(0, 1) (0, 1) . . . (0, 2) (0, 2)

...
...

...
...

...
(0, ω) (0, ω) . . . (0, ω) (0, ω)
(1, 1) (1, 1) . . . (1, 1) (1, 1)
(1, 1) (1, 1) . . . (1, 1) (1, 2)

...
...

...
...

...
(1, ω) (1, ω) . . . (1, ω) (1, ω)

Each row represents a 2-coloring c and a group coloring g and is denoted
by (c, g), where we have a label (c(xi), g(xi)) in column xi. The last col-
umn mi is a mapping

mi : {0, 1}ni × {1, . . . , ω}ni → N0 ∪ {+∞}

which returns for each row (c, g) how many cover vertices are needed for a
vertex cover on Gi under the restriction. A row (c, d) of Ai can describe a
forbidden situation, e.g., that the coloring c leaves uncovered edges, or that
the group coloring g defines a group in which two vertices are not connected
by a path like described above. In this case the value of mi(c, d) is set
to “+∞”.

This concludes the description of the tables, the next step is to describe
the initialization of the tables for the leaf nodes of the nice tree decomposi-
tion.

Table initialization: Table Ai for each leaf node i of the nice tree decom-
position is computed as follows. We assume Xi = {x}. For each row (c, g)
set

mi(c, g) := c(x).

All possible combinations of 2-colorings and group colorings are valid since
there are no edges in G[{x}] and since i has no children, i.e., Xi = Vi. So we
just have to count x if it is a cover vertex.

After this initialization step we compute the tables for the inner nodes.

37

1 1 2 2 3 3 4 2

a b

Xj

Vj \Xj

Figure 4.6: Example of a graph Gj and the corresponding bag Xj. The
labeling is as in Figure 4.5. Suppose that bag Xi does not contain vertex a.
In this case there still is a chance to obtain a connected vertex cover since
there remain cover vertices of the same group in Xi. However, suppose that
bag Xi does not contain vertex b; then it would be impossible to obtain a
connected vertex cover in a later step in any circumstance.

Updating process: The remaining tables are computed in a bottom-up
manner from the leaves to the root depending on the underlying node type.

Forget nodes: Let i denote a forget node with child j. Assume that Xi =
{x1, . . . , xni

} and Xj = {x1, . . . , xni
, x}.

Informally speaking, the idea is to verify whether each configuration in Ai

represents a vertex cover such that every cover vertex in Vi\Xi is connected to
a cover vertex in Xi by a path of cover vertices. If vertex x is a cover vertex,
then there must be a cover vertex in Xi with the same group color; otherwise,
a connected component of the vertex cover would separate from G[Xi] and
thus a connected vertex cover would not be possible anymore. Figure 4.6
gives an example of a vertex which would cause this conflict.

Formally, for each possible 2-coloring c ∈ {0, 1}ni and each possible
group coloring g ∈ {1, . . . , ω} we compute mi(c, g) as follows: For each
color cx ∈ {0, 1} of vertex x and each group color gx ∈ {1, . . . , ω} of ver-
tex x we verify for row (c× cx, g × gx) in Aj the condition that if x is a
cover vertex, i.e., cx(x) = 1, then there has to exist a cover vertex v ∈ Xi

with g(v) = gx(x).2

Let A be the set of rows (c× cx, g × gx) complying with this condition.
We set

mi(c, g) :=

{
min(c×cx,g×gx)∈A{mj(c× cx, g × gx)}, if A 6= ∅
+∞, if A = ∅.

2Note that we also would have to verify the condition that if x is the only cover vertex
in Xi, then every node between i and the root node must be a forget node. However, we
can avoid this condition without loss of generality by permitting leaf bags with more than
one vertex.

38

1 1 1 1 3 3 4 1

1

x

Xi

Vi \Xi

Figure 4.7: Example of a graph Gi. We use Figure 4.6 as a basis. Vertex x
causes two connected components of cover vertices in G[Vi \{x}] to be a part
of one connected component of cover vertices in G[Vi].

This computation is correct, as the vertex cover represented by row (c, g)
in Ai only can be one of the vertex covers represented by rows (c× cx, g × gx)
in Aj due to the following reasons. The vertices in Xi have to be 2-colored
equally in Ai and Aj and they have to be in the same group. Concerning
the 2-color and the group of x, we try all combinations to color x and to
assign it to a group, where we verify the condition that x is not the only
cover vertex in its group for each combination. We take the minimum over
all corresponding entries of table Aj, since we require a vertex cover on Gi

with a minimum number of cover vertices.

Introduce nodes: Let i denote an introduce node with child j. Assume
that Xi = {x1, . . . , xnj

, x} and Xj = {x1, . . . , xnj
}.

Informally, the idea is that connected components of a vertex cover are
possibly merged by vertex x, if x is a cover vertex. If x is not a cover vertex,
then we have to assure that every edge incident to x is covered.

Formally, for each possible coloring c ∈ {0, 1}nj , each coloring cx ∈ {0, 1}
of vertex x, each group coloring g ∈ {1, . . . , ω}nj , and each group color-
ing gx ∈ {1, . . . , ω} of vertex x we compute mi(c× cx, g × gx) as follows. We
differentiate between the two cases whether x is a cover vertex or not.

1. Vertex x is a cover vertex, i.e., cx(x) = 1. The groups of cover vertices
that are adjacent to x are merged. Figure 4.7 gives an example of
connected components of cover vertices in G[Xj] that are connected
to each other by a path of cover vertices containing x in G[Xi]. To
compute mi(c× cx, g × gx) we search for rows (c, g′) in table Aj such
that:

• All groups defined by g′ which contain cover vertices that are
adjacent to x have the same group color in g like x in gx. Vertex x

39

and these groups have a group color that is used by one of these
groups in g′.

• All groups defined by g′ which do not contain cover vertices that
are adjacent to x do have the group color in g they have in g′.

• If there do not exist edges between x and vertices in Xi, then x
has a group color in g not used by any other cover vertex in Xi in
group coloring g.

Let A be the set of rows (c, g′) complying with these conditions. We
set

mi(c× cx, g × gx) :=

{
min(c,g′)∈A{mj(c, g

′)}, if A 6= ∅
+∞, if A = ∅.

2. Vertex x is not a cover vertex, i.e., c(x) = 0. The row (c× cx, g × gx)
has to satisfy that all vertices v ∈ Xi adjacent to x are cover vertices,
i.e., c(v) = 1. If the group coloring g complies with this requirement,
then we set

mi(c× cx, g × gx) := mj(c, g),

else, we set mi(c, g) := +∞.

Join nodes: Let i denote a join node with children j and l. Assume
that Xi = Xj = Xl = {x1, . . . , xni

}.
Suppose different connected components of cover vertices of two vertex

covers on Gj and Gl represented by rows in tables Aj and Al, respectively.
The important observation is that these different connected components pos-
sibly merge by sharing cover vertices in Xi.

Formally, for each row (c, g) in Ai we search pairs of rows (c, gj),(c, gl)
in Aj and Al, respectively, such that the corresponding group colorings gj

and gl comply with the requirement that g equals a group coloring which is
returned by the following algorithm.

1. Initialize a group coloring g′j = gj.

2. While there exist cover vertices in Xi with different group colors in g′j,
but equal group colors in gl, merge the corresponding groups in g′j.
We merge the groups by associating the same group color in g′j to all
related vertices, using a group color used by any of these vertices in g′j.

3. Return g′j.

40

1 1 2 2 3 2 2 Xj

Vj \Xj

1 2 3 3 3 5 3 Xl

Vl \Xl

1 1 3 3 3 3 3 Xi

Vi \Xi

Figure 4.8: Example of a join node i with children j and l. Graph Gj and Gl

at the bottom have both a correct group coloring. The tophand graph Gi

illustrates how the groups of Xj and Xl merge together to a correct group
coloring for Xi.

Figure 4.8 gives an example of how two group colorings merge. This way
two cover vertices u, v ∈ Xi are in the same group in g only if there exists
a path of cover vertices in Gi connecting u and v. Among these pairs of
rows (c, gj),(c, gl) we search a pair such that mj(hj) + ml(hl) is minimal. If
there exists such a pair, then the value of mi(c, g) can be computed as

mi(c, g) := mj(hj) + ml(hl)−#1(c).

(We subtract the number #1(c) of vertices in Xi which are part of the cover
since they are counted in both mj(hj) and ml(hl).) If there exist no such
pairs (c, gj),(c, gl) then mi(c, g) equals “+∞”.

Solution: Let r be the root node of the nice tree decomposition. We have
to choose a row of Ar describing a group coloring such that all cover vertices
of bag Xr are in the same group.

Rows (c, g) describing group colorings g for Xi which assign to all cover
vertices the same group color are candidates to give the size mi(c, g) of a min-
imum connected vertex cover. Among them, we choose a row (c, g) with min-
imum mi(c, g). If mi(c, g) ≤ k, then the algorithm returns “YES-Instance”;
otherwise, it returns “NO-Instance”.

This concludes the description of our algorithm. We proceed with its anal-
ysis to show that Connected Vertex Cover is fixed-parameter tractable
when parameterized by the treewidth.

41

4.4.3 Analysis

The correctness of the algorithm in Section 4.4.2 follows from the correctness
of each step in the dynamic programming on the nice tree decomposition.
The running time is stated in the following.

Theorem 4.4.1. The algorithm in Section 4.4.2 solves ConVC on a given
graph G with nice tree decomposition ({Xi}, T) in O(2ω · ω3ω+2 · |I|) time,
where |I| is the number of nodes of the nice tree decomposition and ω the
treewidth.

Proof. Each table has O(ω) columns and O(2ω · ωω) rows, since the maximum
size of each bag is ω. A table row can be accessed in constant time using for
instance indirect addressing. For each node type we give the running time
needed to compute the entire corresponding table.

Leaf node: For each row we can compute mi in O(1) time, so the running
time for a table is O(2ω · ωω).

Forget node: The running time is O(2ω · ωω · ω), since for each entry of
table Ai we have to look at 2ω entries of table Aj.

Introduce node: The running time is O(2ω · ω2ω+1). For each row of ta-
ble Ai we have to look at O(ωω) rows of Aj, since the coloring is deter-
mined. For each row of table Aj we have to check the given conditions,
and this check can be performed in O(ω) time.

Join node: Let i denote a join node with children j and l. The running time
is O(2ω · ω3ω+2). For each row of table Ai we have to look at O(ωω)
rows of Aj, and for each of these rows we observe O(ωω) rows of Al (the
coloring is determined). For each pair of rows of Aj and Al we have to
check if they fulfill the given conditions, which takes O(ω2) time since
we have to check for all vertex pairs in Xi if their corresponding groups
can be merged.

Thus, the worst-case estimation of the running time is O(2ω · ω3ω+2 · |I|).
This concludes the proof of Theorem 4.4.1.

4.4.4 How to Improve the Running Time

The tables Ai used for the dynamic programming algorithm in Section 4.4.2
use group colorings to describe partitions of the vertex set. Observe that
many group colorings describe the same partition. This can be improved
by assigning to each vertex the lowest possible group color when processing

42

from the left to the right in the order given by the table. In all steps of
the algorithm we then have to satisfy this property by re-coloring the groups
of each partition. This can be done in O(ω) time. We did not state the
algorithm this way since it would complicate its description.

If we apply the requirement that the group colorings have to describe the
partitions in a unique way, then each table for the dynamic programming
has O(2ω ·Bω) instead of O(2ω · ωω) rows, where Bn is the bell number. The
bell number satisfies Bn = O(n!). The algorithm thus can be improved to
run in O(2ω · (ω!)3 · ω2 · |I|) time. Note that methods to efficiently generate
all partitions of a given set exist (see, e.g. [Knu05]).

In the next section we address the Capacitated Vertex Cover using
a similar dynamic programming technique.

4.5 Capacitated Vertex Cover

In this section we address Capacitated Vertex Cover. We first state
an algorithm that solves the problem in polynomial time for graphs with
treewidth two, namely series-parallel graphs, then we sketch how this ap-
proach can be generalized to graphs with treewidth ω. This approach also
shows that CVC is fixed-parameter tractable with treewidth as a parameter
for graph classes with bounded vertex degree. However, the properties of
CVC concerning fixed-parameter tractability with treewidth as a parameter
in the general case remain open.

4.5.1 Series-Parallel Graphs

In this subsection we give an introduction to series-parallel graphs and sp-
trees. The sp-trees of series-parallel graphs were used to design dynamic pro-
gramming algorithms which run in polynomial time for combinatorial prob-
lems on series-parallel graphs, see e.g., Takamizawa et al. [TNS82]. These
results were generalized to graphs with bounded treewidth using a similar
dynamic programming technique to achieve efficient algorithms [AP89]. We
take on this approach; first we show that CVC is efficiently solvable for series-
parallel graphs, then we explain how to generalize this method to graphs with
treewidth ω.

Definition 4.5.1. (Series-Parallel Graph)
A two-terminal labeled graph is a triple (G, a, b), where G = (V, E) is a graph
and a, b ∈ V are the terminals. A series-parallel graph is a two-terminal
labeled graph defined recursively as follows.

43

Nj Nl

Nj Nl

Nj

Nl

initial graphs

series composition parallel composition

a1 b1 a2 b2

a1 u b2 a b

Figure 4.9: A schematic diagram of the series and parallel compositions.

1. Two vertices u and v connected by an edge constitute a series-parallel
graph. We call this the basic series-parallel graph.

2. Given two series-parallel graphs ((V1, E1), a1, b1) and ((V2, E2), a2, b2),
the following two graphs are series-parallel:

(a) Series composition:
The two-terminal labeled graph ((V1 ∪ V2, E1 ∪ E2), a1, b2), where
the vertices b1 and a2 are replaced by a new vertex u such that u
is adjacent to all neighbors of b1 and a2, is series-parallel.

(b) Parallel composition:
The two-terminal labeled graph ((V1 ∪ V2, E1 ∪ E2), a, b) is series-
parallel, where the vertices a1, a2 and b1, b2 are replaced by two
new vertices a and b, respectively, such that a is adjacent to all
neighbors of a1 and a2, and b is adjacent to all neighbors of b1

and b2.

In Figure 4.9 we sketch the series and parallel composition. The structure
of a series-parallel graph can be described by an sp-tree. The notion of sp-tree
is related to tree decomposition, as sp-trees describe the underlying graph
structure with a similar decomposition tree. We apply dynamic programming
on such an sp-tree to solve CVC on series-parallel graphs in Section 4.5.2.

Definition 4.5.2. (SP-Tree)
An sp-tree T(G,a,b) for a series-parallel graph (G, a, b) is a rooted tree in which
each node Ni has a type and an ordered pair of vertices (u, v) as label. There
are three different possible types, namely leaf-node, p-node, and s-node. Ev-
ery node Ni corresponds to a series-parallel graph (Gi, ai, bi), where Gi is a
subgraph of G and (ai, bi) is the label of the node, such that:

44

• If Ni is a leaf-node, then (Gi, ai, bi) is a basic series-parallel graph.
Each edge in G is represented by a leaf-node.

• If Ni is an s-node with children Nj and Nl, then (Gi, ai, bi) is the series-
parallel graph which results by applying the series composition to the
two-terminal labeled graphs (Gj, aj, bj) and (Gl, al, bl) represented by
the nodes Nj and Nl in the sp-tree.

• If Ni is a p-node with children Nj and Nl, then (Gi, ai, bi) is the two-
terminal labeled graph which results by applying the parallel composition
to the two-terminal labeled graphs represented by node Nj and Nl.

• The root of the tree has label (a, b) and corresponds to the graph (G, a, b).

The class of series-parallel graphs can be recognized in linear time in the
input size [Sch95, VTL82]. Series-parallel graphs are exactly the so-called
partial 2-trees [BLS99]. Partial 2-trees in turn are exactly the graphs with
treewidth two, so all graphs with treewidth two are series-parallel [BLS99].
This concludes the description of series-parallel graphs and sp-trees. For a
more detailed introduction to series-parallel graphs we refer to [BLS99]. In
the next section we will apply dynamic programming on sp-trees to solve
CVC on series-parallel graphs.

4.5.2 Dynamic Programming on SP-Trees

For an sp-tree T(G,a,b) of a series-parallel graph (G, a, b) with G = (V, E), a
capacity function c : V → N+, and a weight function w : V → R+, we can
solve CVC using dynamic programming on T(G,a,b).

The main idea is to observe how much capacity remains unused for each of
the terminal vertices of each terminal graph in T(G,a,b) (see Definition 4.5.2).
To describe such a distribution of unused capacity we introduce the notion
of r-capacity.

An r-capacity (“remaining capacity”) for a node Ni with two-terminal
labeled graph (Gi, ai, bi) is a vector (xi, yi) ∈ N0

2. It is used to express the
numbers xi and yi of edges that can still be covered by each of the vertices ai

and bi, respectively. This means that c(ai)−xi edges in Gi are covered by ai,
and c(bi) − yi edges by bi. The r-capacity determines whether or not the
vertices ai and bi are a part of the cover: If the r-capacity of a terminal vertex
equals the total capacity, i.e., xi = c(ai), then the respective vertex ai is not
a part of the cover, whereas it is a part of the cover in all other cases. For
each node Ni with terminal graph (Gi, ai, bi) there exist (c(ai)+ 1)(c(bi)+ 1)
possible r-capacities.

45

As in Sections 4.3 and 4.4 we use tables to store information about so-
lutions on subgraphs of G, and we apply a similar description scheme. The
algorithm works in a bottom-up manner. First we compute the tables for
the leaf nodes, then the remaining nodes are processed from the bottom to
the top until we reach the root node.

Table description: For each node Ni with terminal graph (Gi, ai, bi) we
maintain a table Ai:

ai bi wi

0 0
0 1
...

...
0 c(bi)
1 0
...

...
c(ai) c(bi)

This table has (c(ai) + 1)(c(bi) + 1) rows. The first two values xi and yi

of each row correspond to the r-capacity (xi, yi). The last column wi stores
the weight of the appropriate cover. It is defined as a function depending
on the r-capacity (xi, yi) and returns the weight of a minimum cover on Gi

such that ai covers c(ai)− xi edges of Gi, and bi covers c(bi)− yi edges. The
value wi(xi, yi) equals “+∞” if the r-capacity (xi, yi) describes a distribution
of the capacities of ai and bi such that a capacitated vertex cover for Gi is
not possible. After the initialization the values of wi(xi, yi) are computed for
each table, beginning at the leaf nodes.

Table initialization: Let (Gi, ai, bi) be a two-terminal labeled graph of a
leaf node Ni, i.e., Gi consists of one edge {ai, bi}.

For each leaf node Ni we have to cover {ai, bi}. Therefore, we have to
assure that at least one vertex ai or bi is a part of the cover. The value wi is
computed for each row depending on whether ai or bi is chosen. Let (xi, yi)
denote the r-capacity of each row of table Ai.

Formally, we set for each row

wi(r) :=

w(ai), if yi = c(bi) ∧ xi = c(ai)− 1

w(bi), if xi = c(ai) ∧ yi = c(bi)− 1

+∞, otherwise

(4.1)

The next step is to compute the tables for the remaining nodes.

46

Updating process: We state how to compute the tables for non-leaf nodes
for each node type (s-nodes and p-nodes).

s-nodes: Let (Gi, ai, bi) be a two-terminal labeled graph of an s-node Ni

with children Nj and Nl. The corresponding two-terminal labeled graphs
of Nj and Nl are (Gj, ai, u) and (Gl, u, bi), respectively. Let (xi, yi) denote
the r-capacity for each row of table Ai.

Informally, the two-terminal labeled graph (Gi, ai, bi) is composed by
attaching the two-terminal labeled graphs (Gj, ai, u) and (Gl, u, bi) at ver-
tex u. For each r-capacity (xi, yi) we have to find the best distribution
of the capacity c(u) such that the cover of terminal graph (Gi, ai, bi) has
minimum weight. Therefore, we search in tables Aj and Al for pairs of r-
capacities (xi, yj), (xl, yi) which satisfy the constraint that u covers at most
so many edges as its capacity, i.e. yj + xl ≤ c(u). We then select the pair
which leads to a minimum value for wi.

Values wj(xi, yj) and wl(xl, yi) both may already include the weight w(u),
and we have to subtract it to get the correct value of wi(xi, yi). Only if yj

or xl equals c(u) we do not have to subtract w(u), since it is only counted in
either wj(xi, yj) or wl(xl, yi) then. If both yi and xl equal c(u), then w(u) is
not counted at all since u is not a part of the cover.

To formally describe these facts we define a function d : N0
3 → {0, 1}.

d(x1, x2, c) :=

{
0, if x1 = c ∨ x2 = c

1, otherwise

This function is used in the following to subtract extra weight which is
counted twice. For each row of table Ai we compute

wi(xi, yi) := min
0≤xl≤c(ai)
0≤yj≤c(bi)

{wj(xi, yj) + wl(xl, yi)− d(yj, xl, c(u)) · w(u) :
c(u)− yj ≤ xl}

This concludes the description of the computation for the s-nodes.

p-nodes: Let (Gi, ai, bi) be a two-terminal labeled graph of a p-node Ni

with child nodes Nj and Nl, and with corresponding two-terminal labeled
graphs (Gj, ai, bi) and (Gl, ai, bi). Let (xi, yi) denote the r-capacity for each
row of table Ai.

Here, we attach the two-terminal labeled graphs (Gj, ai, bi) and (Gl, ai, bi)
at vertices ai and bi. For each row of table Ai we search pairs of rows of
tables Aj and Al with r-capacities (xj, yj) and (xl, yl), respectively, such that
attaching (Gj, ai, bi) and (Gl, ai, bi) at vertices ai and bi results in a two-
terminal labeled graph (Gi, ai, bi) having r-capacity (xi, yi). More precisely,
we have to demand that xi = xj + xl − c(ai) and yi = yj + yl − c(bi). For

47

instance, vertex ai covers c(ai)−xj edges in Gj, and it covers c(ai)−xl edges
in Gl. Thus it covers 2c(ai) − xj − xl edges in Gi. This means that it still
can cover c(ai)− (2c(ai)− xj − xl) = xj + xj − c(ai) edges.

Again we have to subtract weight which is counted twice. This works
in the same way as for s-nodes, but applied on both ai and bi. We use the
function d like defined above, but introduce the following abbreviations to
keep the succeeding equation shorter.

δa := d(xj, xl, c(ai)), δb := d(yj, yl, c(bi)).

We compute for each row of table Ai

wi(xi, yi) := min
0≤xj ,xl≤c(ai)
0≤yj ,yl≤c(bi)

{wj(xj, yj) + wl(xl, yl)− δa · w(ai)− δb · w(bi) :

xi = xj + xl − c(ai) ∧ yi = yj + yl − c(bi)}.

This concludes the description of the computation for the p-nodes.

Solution: After processing the root node Nr we get the weight of a min-
imum capacitated vertex cover by searching the row (xi, yi) with minimum
value wi(xi, yi). This concludes the description of this algorithm.

4.5.3 Time Complexity

The correctness of the algorithm in Section 4.5.2 follows from the correctness
of each step in the dynamic programming on the sp-tree. The running time
is stated in the following.

Lemma 4.5.1. The algorithm presented in Section 4.5.2 solves CVC on
n-vertex series-parallel graphs in O(n5) time.

Proof. The tables used to store information about possible solutions for each
two-terminal labeled graph (Gi, ai, bi) have (c(ai) + 1)(c(bi) + 1) rows. The
maximum meaningful capacity of each vertex of the input graph is n − 1,
since there cannot exist more incident edges. If a capacity exceeds n − 1,
then it can be set to n− 1 without affecting the solution.

With this bound on the vertex capacities, we have at most n2 rows in each
table. We can assume that a table row can be accessed in constant time using
for instance indirect addressing. The table initialization can be done in O(n2)
time for each table, since for each row of a table we have to apply one out of
three cases, which can be done in O(1) time (see Equation (4.1)). To compute
table Ai for s-nodes we need O(n4) time, since for each row of table Ai we
have to search for the best solution by examining O(n2) combinations of rows

48

in table Aj and table Al. The computation of the tables for the p-nodes also
needs O(n4) time, since we also have to examine O(n2) combinations due to
the restrictions xi = xj + xl − c(ai) and yi = xj + xl − c(bi).

We get the worst-case time of O(n5) to compute all tables, and the fol-
lowing determination of the result using the root node only needs O(n2)
time.

In the next section, we generalize this approach to dynamic programming
on tree decompositions.

4.5.4 CVC on Tree Decompositions

Here we sketch how to generalize the dynamic program given in Section 4.5.2
to graph classes with treewidth ω.

We stated the algorithm for series-parallel graphs first, as the detailed
description of an algorithm for graph classes with treewidth ω would be far
more complicated, although the main idea is very similar. Thus, using the
idea of our algorithm for series-parallel graphs, we describe the algorithm for
graph classes with treewidth ω in a less detailed way.

Let us recall what we actually did to solve CVC on series-parallel graphs.
Each node Ni of the given sp-tree is associated with a two-terminal labeled
graph (Gi, ai, bi). We store the r-capacity of the vertices ai and bi to describe
possible solutions on Gi. In other words, we store possible solutions for
the subgraph (Gi, ai, bi) independent from how the solution looks like in the
remaining graph.

This approach works in a similar way for graph classes with treewidth ω.
Let ({Xi : i ∈ I}, T) be a nice tree decomposition for a given graph G. Recall
that each non-leaf bag Xi is a separator of G. We have to characterize possible
solutions on Gi in a way such that they are independent from the remaining
graph. We adapt the method we applied for series-parallel graphs. For each
vertex v ∈ Xi we store the information about how many edges it still can
cover. Again we use a table Ai to store for all vertices in Xi = {x1, . . . , xni

}
all combinations of free capacities.

x1 . . . xni
wi

0 . . . 0
...

c(x1) . . . c(xni
)

Such a table has O(nω) rows, because the maximal size of a bag is ω and the
capacities of all vertices are upper-bounded by n. For each row of a table Ai

we store the weight wi of the appropriate solution for Gi. For each node

49

type (leaf, introduce, forget, and join) we compute the values of wi of the
appropriate table Ai by using the child tables of Ai: We check for each row
of table Ai if the corresponding distribution of the capacities is possible, and
if so we compute the weight of the corresponding capacitated vertex cover.
In the following we explain the most important aspects of this method.

Table initialization: Each leaf bag contains only one vertex x, so there
is no edge to cover. The row denoting that the free capacity of x is c(x)
has value “0” in column wi and describes the only valid situation. In the
remaining rows we set value “+∞” in column wi.

Updating process: The remaining tables are computed in a bottom-up
manner from the leaves to the root depending on the underlying node type.

Forget nodes: For each row r of the corresponding table we look up all
rows of the child table which describe the same amount of free capacity for
each vertex in the bag, except for vertex x, which is not included in the bag
of the forget node. Value wi of row r is set to a minimal value wj of all
matching rows of the child table.

Introduce nodes: In this step we have to consider that the new vertex x
possibly has adjacent vertices which are a part of the introduce node i. The
corresponding new edges have to be covered. Similar to our approach for
series-parallel graphs, each row r of table Ai describes the free capacity of
each vertex in Xi, and we write r(x) to describe how many edges still can be
covered by vertex x. For each row r of table Ai we have to search for rows rj

of the child table Aj, such that

• there are c(x)− r(x) vertices in Xj that are adjacent to x and have the
same free capacity in r as in rj,

• all other vertices adjacent to x have one less free capacity in r as in rj,
and

• vertices in Xi not adjacent to x are have the same free capacity in r as
in rj.

The value wi(r) is computed by searching the cheapest solution. That is,
for all adequate rows rj we search a row r′ with minimum value wj(r

′). To
compute wi(r), we use wj(r

′) and add the weight of vertex x if x is a part of
the cover. If there do not exist adequate rows rj we set wi(r) := +∞.

Join nodes: For each row r of table Ai of a join node we have to search for
pairs of rows (rj, rl) of the child tables Aj and Al, respectively, such that r

50

is the result of merging the free capacities described by rj and rl. Here we
are actually doing exactly the same as we did for p-nodes for series-parallel
graphs. The only difference is the number of vertices involved.

Solution: The solution to the problem can be obtained by searching a row
of the root table with a minimum value of wi.

Analysis: The running time of this algorithm is stated in the following.

Theorem 4.5.1. The algorithm solves Capacitated Vertex Cover on a
given graph G with nice tree decomposition ({Xi}, T) in O(n2ω · ω · |I|) time,
where k is the size of the desired capacitated vertex cover, and |I| and ω are
the number of nodes and the width of the nice tree decomposition, respectively.

Proof. The worst-case running time to compute a table is (nω)2 · ω: In the
case of forget nodes we have to compute nω table entries, and for each entry
we have to look up O(nω) rows and perform a test which takes O(ω) time for
each row. In the case of introduce nodes we have to look up for each table
entry at most nω entries of the child table, again performing a test which
needs O(ω) time. In the case of join nodes we have to look up at most 2 · nω

entries of the child tables due to restrictions of type “xi = yj + xl − c(ai)”
for each vertex of the bag (see Section 4.5.3). Thus, the total running time
of the algorithm is O(n2ω · ω · |I|), where |I| is the number of nodes of the
nice tree decomposition.

However, this running time can be improved as follows. Note that, if the
degree deg(v) of a vertex v exceeds k, then v must cover at least deg(v)− k
edges, i.e., c(v) ≥ deg(v)− k. Otherwise, more than k edges would be cov-
ered by more than k vertices adjacent to v, so the cover would exceed its
maximum size k. On the other hand, the maximum meaningful value of c(v)
is deg(v). This means that the meaningful capacity of each node lies withing
a range of k.

With this observation, the size of the tables used in the algorithm pre-
sented in this section can be reduced from O(nω) to O(kω). Hence, the
time to compute a table is O(k2ω · ω). That means that for all tables we
need O(k2ω · ω · |I|) time, where |I| is the number of nodes of the nice tree
decomposition.

Theorem 4.5.2. The algorithm stated in this section can be modified such
that it solves Capacitated Vertex Cover on a given graph G with nice
tree decomposition ({Xi}, T) in O(k2ω · ω · |I|) time, where k is the size of
the desired capacitated vertex cover, and |I| and ω are the number of nodes
and the width of the nice tree decomposition, respectively.

51

Another observation can be made when we adapt the tables of the algo-
rithm in Section 4.5.4 for graphs with bounded vertex degree.

Corollary 4.5.1. CVC is fixed-parameter tractable with treewidth as param-
eter for graph classes with bounded vertex degree.

Proof. If the vertex degree is bounded by a constant c, then the maximal
meaningful free capacity of a vertex is c. In this case, the table size can
be reduced from nω (see proof of Theorem 4.5.1) to cω. This means that
the running time can be improved from O(n2ω · ω · |I|) (see Theorem 4.5.1)
to O(c2ω · ω · |I|), which shows that CVC is fixed-parameter tractable with
respect to treewidth for graphs with bounded vertex degree.

The difficulty in the case of general CVC seems to be that the distribution
of the vertex capacities of the vertices in Xi affects the solution for Gi;
one more unit of capacity available for subgraph Gi might change its cover
by a sort of “chain reaction”. That is, if a vertex has one more unit of
capacity available, then it can cover one more edge in the subgraph, and the
corresponding neighbor then again has one more unit of capacity available.
In this way a free capacity unit can be passed to any vertex on a path of cover
vertices, possibly affecting the weight of the corresponding solution if there
is a vertex which can be omitted from the cover by using the free capacity
unit.

So in each bag Xi we have to fix the number of edges covered in the
corresponding subgraph Gi. We store for each vertex the number of edges it
still can cover, and unfortunately this number is not bounded by a function
depending only on the treewidth. We have O(nω) possible capacity distribu-
tions for a bag and so the table would be too big to lead to fixed-parameter
tractability with respect to treewidth in the general case.

4.6 Concluding Remarks

Interestingly, Partial Vertex Cover is fixed-parameter tractable with
respect to treewidth as parameter, but it is W [1]-hard when parameterized
by the maximum size of the desired cover (see Section 3). On the other
hand, Connected Vertex Cover is fixed-parameter tractable for both
parameterizations. We showed that Capacitated Vertex Cover is fixed-
parameter tractable with the treewidth as parameter for graphs with bounded
vertex degree. However, we do not know if the problem is fixed-parameter
tractable with respect to treewidth in the general case. This is an open
problem and appears to be an interesting starting point for future work.

52

In the next chapter we will consider a generalization of CVC restricted to
trees. In this case we also encounter the difficulty of “distributing capacities”,
so this variant of the problem can be used to study this difficulty of CVC
more closely under simplified conditions. It is interesting that the running
time of the algorithm that solves this variant also depends on the maximum
vertex degree.

53

54

Chapter 5

Capacitated Vertex Cover on
Trees

In this chapter we study the Minimum Capacitated Vertex Cover
with Demand (CVCD) problem on trees. This problem is a general-
ization of Capacitated Vertex Cover and is introduced by Guha et
al. [GHKO03]. The additional requirement is that each edge is assigned a
demand which denotes the number of capacity units needed to cover the edge.
Minimum Capacitated Vertex Cover with Demand is NP-complete
even when restricted to trees (recall that Capacitated Vertex Cover is
polynomial-time solvable on trees). The NP-completeness can be shown by
a reduction from the Knapsack problem [GHKO03].

Guha et al. [GHKO03] present several variants of the problem, some of
them remain NP-complete while others can be solved in polynomial time,
when restricted to trees. We continue their work and give a fixed-parameter
algorithm with the maximum vertex degree as parameter for an NP-complete
variant of this problem on trees.

This chapter is organized as follows. In Section 5.1 we first give the
definition of CVCD restricted to trees and present the different variants of
the problem. Thereafter, we give an overview of the known results presented
by Guha et al. [GHKO03], including the new results which are derived in
Section 5.2.

5.1 Definitions and Preliminaries

In this section we introduce CVCD restricted to trees, explain its variants,
and state known and new results.

For the definition of CVCD we need the notion of multiset. A multiset is

55

a collection in which a element is allowed to occur more than once. In the
CVCD problem, vertices can be taken several times into the cover, and we
use multisets to describe such a cover. Each occurrence of a vertex in the
multiset is called a copy of the vertex.

Definition 5.1.1. Given a tree T = (V, E), vertex weights w : V → R+,
vertex capacities c : V → N+, and edge demands d : E → N+, a cvcd-cover
is defined as a multiset V ′ of vertex copies with the following properties:

1. Taking x copies of a vertex into the cvcd-cover causes the vertex to have
x-times its original capacity.

2. Each edge e has to be covered by at least d(e) capacity units.

The weight of a cvcd-cover V ′ is the sum of the weights of each vertex copy
in V ′.

In other words, we have to “pay” the weight w(v) for each copy of a
vertex v. The central problem of this chapter is defined as follows.

Definition 5.1.2. (Minimum Capacitated Vertex Cover with De-
mand on Trees):

Input: A tree T = (V, E), vertex weights, vertex capacities, and
edge demands.

Output: A cvcd-cover with minimum weight (minimum cvcd-cover).

The abbreviation for this problem is CVCDT. We consider several vari-
ants of this problem. Variants consist of combinations of constraints on the
general case. We list these constraints in the following, where we distinguish
between the general case and the restricted case, stating always the general
case in first place.

SPLIT/NOSPLIT: We differentiate between the two cases whether or not
the demand d(e) of an edge e can be split. In the general case (SPLIT),
it is possible that an edge obtains its assigned capacity by copies of
both incident vertices, whereas in the restricted case (NOSPLIT) the
demand of an edge has to be satisfied by copies of only one of its
endpoints. Thus for an edge e = {u, v} the amount of capacity units
of either u or v assigned to e has to be equal or greater than d(e) (and
the other has to equal 0).

Unbounded vertex degree/Bounded vertex degree: In general there
is no constraint on the vertex degree, whereas in the latter case the
vertex degree is bounded by a constant.

56

weight capacity demand splittable Complexity

∗ u ∗ SPLIT/NOSPLIT NP-complete
u ∗ ∗ SPLIT/NOSPLIT P
∗ ∗ u NOSPLIT P
∗ ∗ u SPLIT NP-complete

Table 5.1: Some complexity results of CVCDT. We denote the general case
with an asterisk (“*”), and uniform weight, capacity, or demand with a “u”.
These results are presented in [GHKO03].

Unrestricted weight/Uniform weight: In the general case, there is no
constraint on the vertex weight, whereas in the uniform weight case
we require that all vertices have the same weight. The following two
constraints are defined analogously: “Unrestricted capacity/Uniform
capacity” and “Unrestricted demand/Uniform demand”.

How do different combinations of constraints affect the computational com-
plexity of CVCDT? For instance, Guha et al.[GHKO03] showed that CVCDT
with SPLIT and uniform demand is NP-complete, whereas CVCDT with
NOSPLIT and uniform demand is in P. More variants and their computa-
tional complexity as shown by Guha et al. can be found in Table 5.1. In the
next section we will show that:

• CVCDT with NOSPLIT can be solved in O(2k · n) time, where k and n
are the maximum vertex degree and the number of vertices of the input
graph, respectively.

• CVCDT with SPLIT, uniform edge demand, and bounded vertex de-
gree can be solved in polynomial time if the edge demand is polynomial
in n.

5.2 Fixed-Parameter Tractability

The main result of this section is an algorithm that shows that CVCDT is
fixed-parameter tractable with respect to the vertex degree when we assume
NOSPLIT. The principle of the algorithm is similar to that of the algorithms
calculating the weight of a minimum cvcd-cover on a tree as stated by Guha
et al. [GHKO03] for some restricted variants of CVCDT, but it can solve the
problem in a more general case (assuming only NOSPLIT). Our algorithm

57

works in two phases. In the first phase, it computes the weight of a mini-
mum cvcd-cover on a given tree, and in the second phase it computes the
corresponding cvcd-cover. We present our algorithm in the following section.

5.2.1 An Algorithm for CVCDT (NOSPLIT)

Given is an instance of the CVCDT problem, that is, a tree T = (V, E)
with vertex weights w(v), vertex capacities c(v), and edge demands d(e). We
suppose that splitting is not allowed (NOSPLIT). We root T at an arbitrary
vertex and assume that every non-root vertex v in V has a smaller index
than its parent. Let Tv denote the subtree of T with root v. The idea of
the algorithm is the following: We process the vertices in increasing order
of their indices and compute the weight of a minimum cvcd-cover on Tv

and the weight of a minimum cvcd-cover on Tv with the constraint that v
covers the edge to its parent. To compute these weights, we use the already
computed weights of the children of v and try all possibilities to cover the
edges between v and its children. After having processed every vertex, the
weight of a minimum cvcd-cover on T has been computed. After that, the
algorithm collects the vertices of the corresponding cvcd-cover in a second
step.

In the following we describe more explicitly the variables used in the
algorithm. The value stored in W 0

v denotes the weight of the minimum cvcd-
cover on Tv in the case that v does not cover the edge {u, v} to its parent u
(thus it is covered by u entirely due to NOSPLIT). Accordingly, W 1

v gives
the weight of the minimum cvcd-cover on Tv, assuming that v covers {u, v}.
In order to provide the minimum cvcd-cover itself, we introduce a choice
variable Ci

v(w) ∈ {0, 1}, i ∈ {0, 1} for each child w of a vertex v. For each
child w of v the variable C0

v (w) indicates whether w covers the edge {w, v}
if v does not cover {u, v}. Analogously, C1

v (w) indicates whether w covers
the edge {w, v} if v covers {u, v}. Moreover, we use N i

v to denote the number
of copies of vertex v that are assigned to the cvcd-cover. Note that this value
is actually not needed as it could be calculated using Ci

v(w), but it eases the
description of the algorithm.

Using this notation, the procedure in Figure 5.1, as the first step of our
algorithm, computes the weight of a minimum cvcd-cover on T . Afterwards,
the procedure in Figure 5.2 computes a minimum cvcd-cover, accomplishing
the task of the second step of our algorithm.

Analysis: The following lemma shows that CVCDT is fixed-parameter
tractable when parameterized by the maximum vertex degree.

58

inputs
Rooted tree T = (V,E), weights w : V → R,
capacities c : V → N, edge demands d : E → N0

output
The weight of a minimum cvcd-cover of T .

begin1

[Initialization of the leaves]
forall leaves v of T do2

u← parent of v3

[Set the number of copies and the corresponding weights]

N0
v ← 0; N1

v ← d
d({u,v})

c(v) e; W 0
v ← 0; W 1

v ← w(v) ·N1
v4

end5

[Main loop]
for v ← v1 to vn do6

if v 6= vn then u← parent of v7

[The value of i indicates whether or not v covers {u, v}]
forall i ∈ {0, 1} do8

if v = vn ∧ i = 1 then return W 0
vn

9

A← set of children of v; Wmin ←∞10

forall S ⊆ A do11

[Each vertex w ∈ S covers the edge {w, v}]
[dS is the demand of the edges that have to be
covered by v]
dS ←

∑
w∈A\S d({v, w}) + i · d({u, v})12

[WS is the weight of the corresponding
cvcd-cover]
WS ←

∑
w∈S W 1

w +
∑

w∈A\S W 0
w + ddS/c(v)e · w(v)13

if Wmin > WS then Wmin ←WS ; Smin ← S; dmin ← dS14

end15

[Sets W i
v and N i

v correspond to a minimum cvcd-cover]
W i

v ←Wmin; N i
v ← ddmin/c(v)e16

[Set variables Ci
v(w) which indicate whether or not

vertex w covers {w, v} for all children w of v.
These variables will be used by the second phase.]
forall w ∈ A \ Smin do Ci

v(w)← 017

forall w ∈ Smin do Ci
v(w)← 118

end19

end20

return W 0
vn

21

end22

Figure 5.1: Procedure to compute the weight of a minimum cvcd-cover
of a tree.

59

inputs
Rooted tree T = (V,E), weights w : V → R,
capacities c : V → N, edge demands d : E → N0

output
A minimum cvcd-cover of T .

begin1

return getCover(vn,0)2

end3

function getCover(v ∈ V, i ∈ {0, 1})4

M ← {(v,N i
v)}5

A← set of children of v6

[For each child w of v we collect recursively a cvcd-cover
of Tw, using the variable Ci

v which indicates whether w
covers {w, v} or not (Ci

v was computed in the first phase of
the algorithm).]
forall w ∈ A do7

M ←M ∪ getCover(w,Ci
v(w))8

end9

return M10

end function11

Figure 5.2: Procedure to compute a minimum cvcd-cover of a tree.
Function “getCover()” returns the cvcd-cover of Tv depending on
whether or not v covers the edge to its parent. Each element of M
is a pair of a vertex v and the number of copies of v in the cvcd-cover.

Lemma 5.2.1. The procedure in Figure 5.1 correctly calculates the weight
of a minimum cvcd-cover of a tree T in O(2k · n) time, where k denotes the
maximum vertex degree. Moreover, the values of Ci

v and N i
v (i ∈ {0, 1})

needed for the second phase are correctly set for each vertex v.

Proof. The correctness of this procedure can be shown by induction
on the vertex index: if we assume for a vertex vj that the values N i

vl
, W i

vl

(i ∈ {0, 1}) for all 1 ≤ l ≤ j − 1 have been correctly computed, then the
values N i

vj
, W i

vj
(i ∈ {0, 1}) are computed correctly, since the inner loop in

line 11 tries brute force all combinations to cover the edges from vj to its
children and selects a combination with minimum weight. The combination
which leads to a minimum weight then is stored in Ci

vj
(i ∈ {0, 1}) in line 17.

It remains to analyze the running time. The initialization in line 2 runs
in linear time, and the main loop iterates exactly n times. Each iteration
passes the two cases i = 0 and i = 1, trying for each case at most 2k−1

60

possible subsets, so the total running time is O(2k · n). �
The next step is to compute the minimum cvcd-cover itself, which can be

done in O(n) time.

Lemma 5.2.2. The procedure in Figure 5.2 constructs a minimum capaci-
tated vertex cover for a tree T in time O(n).

Proof. After running the procedure in Figure 5.1 the variables Ci
v(w)

and N i
v are correctly computed (see Lemma 5.2.1). Thus, for each of the two

cases i ∈ {0, 1} whether a vertex v covers the edge to its parent u or not we
know that there are N i

v copies of v in a cvcd-cover, and that a cvcd-cover
has minimum weight if each child w of v with Ci

v(w) = 1 covers {v, w}. We
apply the first case (i = 0) to the root vn (it does not have a parent). This
determines the cases for all the remaining vertices v1, . . . , vn−1 in the tree,
so we just have to collect the vertices of the minimum cvcd-cover by using
the recursive procedure “getCover”. The first call of this procedure in line 2
results in a recursive call for each child, where each call needs constant time.
Since there are n − 1 predecessors of vn in total, the running time of the
second phase is O(n). �

Using Lemma 5.2.1 and Lemma 5.2.2, we can state the following theorem.

Theorem 5.2.1. In the case that splitting is not allowed, CVCDT can be
solved in O(2k · n) time, where k and n denote the maximum vertex degree
and the number of vertices of the input tree, respectively.

5.2.2 Splitting Demands

We have shown that the CVCDT problem can be solved in O(2k · n) time
in the NOSPLIT-case, where k denotes the maximum vertex degree of the
given tree with n vertices. However, it is also possible to solve CVCDT with
uniform demand in the SPLIT-case with a slightly modified algorithm. We
describe the idea of this modification briefly in the following.

Recall that the main principle of the algorithm is to compute for each
vertex v the weight of a minimum cvcd-cover on subtree Tv for the two cases
whether or not v covers the edge to its parent u. The weight of a minimum
cvcd-cover on Tv for each of these cases is computed by trying brute force all
configurations of whether or not v covers an edge to its children.

The modified algorithm for the SPLIT-case with uniform demand and
bounded vertex degree works similar: A vertex v can cover an edge partially.
Thus we have to compute for each vertex v the weight of a minimum cvcd-
cover on subtree Tv for each possibility to assign capacity units from v to
the edge to its parent u. If the uniform demand is denoted by d ∈ N, then

61

there are at most d + 1 ways to assign capacity of v to {u, v}. The weight of
a minimum cvcd-cover on Tv for each of these cases is computed by trying
brute force all configurations of distributing capacity units from v to the
edges to its child vertices. This gives (d + 1)k possible configurations, and
this means that the total running time to compute a minimum cvcd-cover
is O((d + 1)k · n).

This means that if d is polynomial in n, then this modificated algorithm
computes the weight of a minimum cvcd-cover in polynomial time for trees
with bounded vertex degree k. The appropriate cvcd-cover can be computed
by a backtracking step similar to the procedure in Figure 5.2. We summarize
this result with the following corollary:

Corollary 5.2.1. Assuming uniform edge demand d, CVCDT can be solved
in O((d + 1)k · n) time, where k and n denote the maximum vertex degree
and the number of vertices of the input tree, respectively.

62

Chapter 6

Conclusion

In this chapter we give a brief summary of this work and its results. Moreover,
we give some suggestions of starting points for related future research.

6.1 Summary

In Chapter 2 we defined the basic notation needed for this work and gave
a brief introduction to parameterized complexity theory. After that, in
Chapter 3, we introduced Partial Vertex Cover, Connected Ver-
tex Cover, and Capacitated Vertex Cover, the three key problems
of this work. In Chapter 4 we provided a basic introduction to tree decom-
positions and treewidth and used the technique of dynamic programming on
tree decompositions to show that

• Partial Vertex Cover is fixed-parameter tractable with respect to
treewidth,

• Connected Vertex Cover is fixed-parameter tractable with re-
spect to treewidth,

• Capacitated Vertex Cover is fixed-parameter tractable with re-
spect to treewidth for graphs with bounded vertex degree, and

• Capacitated Vertex Cover can be solved in O(k2ω · ω · |I|) time,
where k denotes the maximum size of the capacitated vertex cover, and
ω and |I| denote the treewidth and the number of nodes of the nice
tree decomposition, respectively.

In Section 5 we gave an overview of existing work about Minimum Ca-
pacitated Vertex Cover with Demand on Trees, and showed the
following.

63

• In the case that the splitting of edge demands is not allowed, Minimum
Capacitated Vertex Cover with Demand on Trees is fixed-
parameter tractable with respect to the maximum vertex degree as
parameter.

• For trees with uniform edge demand d, where the splitting of the edge
demand is allowed, Minimum Capacitated Vertex Cover with
Demand on Trees can be solved in O((d + 1)k · n) time, where k
denotes the maximum solution size, and n the number of vertices of the
input graph. The case without restrictions on edge demands remains
open.

6.2 Open Problems

For Partial Vertex Cover and Connected Vertex Cover it would
be interesting to see how we can improve the running time of the dynamic
programming to get better worst-case running time bounds.

Another interesting question is whether or not Capacitated Vertex
Cover is fixed-parameter tractable with respect to treewidth as parameter.
This could be shown with different approaches. One possibility would be
to improve our dynamic programming approach on nice tree decompositions.
Another method to show the fixed-parameter tractability of a graph problem
is to formulate the problem in monadic second order logic [Bod97, CMR01].
Moreover, it could be interesting to learn more about Minimum Capaci-
tated Vertex Cover with Demand on Trees because its main diffi-
culty of how to “distribute capacities” also occurs in the dynamic program-
ming on tree decompositions to solve Capacitated Vertex Cover. Also,
it would be interesting to investigate the practical behavior of our algorithms,
so another future task would be to implement the described algorithms.

6.3 Acknowledgments

I would like to thank my advisors Jiong Guo, Rolf Niedermeier, and Sebastian
Wernicke for the considerable effort they devoted to this thesis. They intro-
duced me to parameterized complexity theory, gave many helpful advises, and
spent hours in discussing my work and proof-reading my drafts. I am espe-
cially grateful for what they taught me about scientific writing, which will be
certainly beneficial to me in the future. Moreover, I would like to thank To-
bias Berg and Matthias Hagen for reading my final draft and giving me some
helpful comments.

64

Bibliography

[ABF+02] Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks,
and Rolf Niedermeier. Fixed parameter algorithms for Dominat-
ing Set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002. → 4

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski.
Complexity of finding embeddings in a k-tree. SIAM Journal
on Algebraic and Discrete Methods, 8:277–284, 1987. → 23

[ACPS93] Stefan Arnborg, Bruno Courcelle, Andrzej Proskurowski, and
Detlef Seese. An algebraic theory of graph reduction. Journal
of the ACM, 40(5):1134–1164, 1993. → 24

[AFN04] Jochen Alber, Henning Fernau, and Rolf Niedermeier. Parame-
terized complexity: exponential speed-up for planar graph prob-
lems. Journal of Algorithms, 52(1):26–56, 2004. → 4

[AHH93] Esther M. Arkin, Magnus M. Halldórsson, and Refael Hassin.
Approximating the tree and tour covers of a graph. Information
Processing Letters, 47(6):275–282, 1993. → 17

[AKCF+04] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows,
Michael A. Langston, W. Henry Suters, and Christof T. Symons.
Kernelization algorithms for the vertex cover problem: Theory
and experiments. In Proceedings of the 6th Workshop on Algo-
rithm Engineering and Experiments (ALENEX’04), pages 62–
69, 2004. → 3, 4

[AKLSS05] Faisal N. Abu-Khzam, Michael A. Langston, Pushkar Shanbhag,
and Christopher T. Symons. Scalable parallel algorithms for
FPT problems. To appear in Algorithmica, 2005. → 3

65

[Alb03] Jochen Alber. Exact Algorithms for NP-hard Problems on Net-
works: Design, Analysis, and Implementation. Ph.D. disserta-
tion, Universität Tübingen, Germany, 2003. → 6

[AP86] Stefan Arnborg and Andrzej Proskurowski. Characterization
and recognition of partial 3-trees. SIAM Journal of Algebraic
and Discrete Methods, 7(2):305–314, 1986. → 24

[AP89] Stefan Arnborg and Andrzej Proskurowski. Linear time algo-
rithms for NP-hard problems restricted to partial k-trees. Dis-
crete Applied Mathematics, 23(1):11–24, 1989. → 43

[AR02] Vikraman Arvind and Venkatesh Raman. Approximation algo-
rithms for some parameterized counting problems. In Proceed-
ings of the 13th International Symposium on Algorithms and
Computation (ISAAC’02), volume 2518 of LNCS, pages 453–
464. Springer, 2002. → 4

[BB98] Nader H. Bshouty and Lynn Burroughs. Massaging a linear
programming solution to give a 2-approximation for a gener-
alization of the vertex cover problem. In Proceedings of the
15th Symposium on Theoretical Aspects of Computer Science
(STACS’98), volume 1373 of LNCS, pages 298–308. Springer,
1998. → 5, 15

[BdF96] Hans L. Bodlaender and Babette de Fluiter. Reduction algo-
rithms for constructing solutions in graphs with small treewidth.
In Proceedings of the Second Annual International Conference
on Computing and Combinatorics (COCOON’96), volume 1090
of LNCS, pages 199–208. Springer, 1996. → 6

[BFR98] R. Balasubramanian, Michael R. Fellows, and Venkatesh Ra-
man. An improved fixed-parameter algorithm for vertex cover.
Information Processing Letters, 65(3):163–168, 1998. → 4,
5

[BGHK95] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson,
and Ton Kloks. Approximating treewidth, pathwidth, frontsize,
and shortest elimination tree. Journal of Algorithms, 18(2):238–
255, 1995. → 24

[BH98] Hans L. Bodlaender and Torben Hagerup. Parallel algorithms
with optimal speedup for bounded treewidth. SIAM Journal on
Computing, 27(6):1725–1746, 1998. → 24

66

[Blä03] Markus Bläser. Computing small partial coverings. Information
Processing Letters, 85(6):327–331, 2003. → 16

[BLS99] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad.
Graph classes: a survey. Society for Industrial and Applied
Mathematics, 1999. → 45

[Bod88a] Hans L. Bodlaender. Dynamic programming on graphs with
bounded treewidth. In Proceedings of the 15th Interna-
tional Colloquium on Automata, Languages and Programming
(ICALP’88), volume 317 of LNCS, pages 105–118. Springer,
1988. → 6

[Bod88b] Hans L. Bodlaender. Some classes of graphs with bounded
treewidth. Bulletin of the EATCS, 36:116–125, 1988. → 6

[Bod93] Hans L. Bodlaender. A tourist guide through treewidth. Acta
Cybernetica, 11:1–21, 1993. → 6

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Comput-
ing, 25:1305–1317, 1996. → 24

[Bod97] Hans L. Bodlaender. Treewidth: Algorithmic techniques and
results. In Proceedings of the 22nd International Symposium
on Mathematical Foundations of Computer Science (MFCS’97),
volume 1295 of LNCS, pages 19–36. Springer, 1997. → 6, 64

[CDRC+03] James Cheetham, Frank Dehne, Andrew Rau-Chaplin, Ulrike
Stege, and Peter J. Taillon. Solving large FPT problems on
coarse-grained parallel machines. Journal of Computer and Sys-
tem Sciences, 67(4):691–706, 2003. → 4

[CG05] L. Sunil Chandran and Fabrizio Grandoni. Refined memoriza-
tion for vertex cover. Information Processing Letters, 93(3):123–
131, 2005. → 4, 5

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Fur-
ther observations and further improvements. Journal of Algo-
rithms, 41(2):280–301, 2001. → 4

[CMR01] Bruno Courcelle, Janos A. Makowsky, and Udi Rotics. On the
fixed parameter complexity of graph enumeration problems de-
finable in monadic second-order logic. Discrete Applied Mathe-
matics, 108(1):23–52, 2001. → 64

67

[CN02] Julia Chuzhoy and Joseph Naor. Covering problems with hard
capacities. In Proceedings of the 43rd Symposium on Founda-
tions of Computer Science (FOCS’02), pages 481–489. IEEE
Computer Society, 2002. → 5, 18

[DF99] Rodney G. Downey and Michael R. Fellows. Parameterized
Complexity. Springer, 1999. → 4, 10, 12, 13

[DH05] Erik D. Demaine and Mohammad T. Hajiaghayi. Bidimension-
ality: New connections between FPT algorithms and PTASs. In
Proceedings of the 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’05), pages 590–601, 2005. → 17,
35

[DHT02] Erik D. Demaine, Mohammad T. Hajiaghayi, and Dimitrios M.
Thilikos. Approximation for treewidth of graphs excluding a
graph with one crossing as a minor. In Proceedings of the 5th
International Workshop on Approximation Algorithms for Com-
binatorial Optimization (APPROX’02), volume 2462 of LNCS,
pages 67–80. Springer, 2002. → 24

[Die05] Reinhard Diestel. Graph Theory. Springer, 3rd edition, 2005.
→ 10, 26

[DS02] Irit Dinur and Shmuel Safra. The importance of being biased. In
Proceedings of the 34th Annual ACM Symposium on Theory of
Computing (STOC’02), pages 33–42. ACM Press, 2002. → 4

[Fel03] Michael R. Fellows. New directions and new challenges in al-
gorithm design and complexity, parameterized. In Proceed-
ings of the 8th Workshop on Algorithms and Data Structures
(WADS’03), volume 2748 of LNCS, pages 505–520. Springer,
2003. → 4

[GHK+03] Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and
Aravind Srinivasan. An improved approximation algorithm for
vertex cover with hard capacities. In Proceedings of the 30th
International Colloquium on Automata, Languages and Pro-
gramming (ICALP’03), volume 2719 of LNCS, pages 164–175.
Springer, 2003. → 5, 18

[GHKO03] Sudipto Guha, Refael Hassin, Samir Khuller, and Einat Or. Ca-
pacitated vertex covering. Journal of Algorithms, 48(1):257–270,
2003. → 5, 6, 18, 19, 55, 57

68

[GKS04] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approx-
imation algorithms for partial covering problems. Journal of
Algorithms, 53(1):55–84, 2004. → 5, 15, 16

[GNW05] Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Param-
eterized complexity of generalized vertex cover problems. In
Proceedings of the 9th Workshop on Algorithms and Data Struc-
tures (WADS’05), volume 3608 of LNCS, pages 36–48. Springer,
2005. → 5, 15, 16, 17, 18

[Gro05] Vic Grout. Principles of cost minimisation in wireless networks.
Journal of Heuristics, 11(2):115–133, 2005. → 17

[HS02] Eran Halperin and Aravind Srinivasan. Improved approximation
algorithms for the partial vertex cover problem. In Proceedings
of the 5th International Workshop on Approximation Algorithms
for Combinatorial Optimization (APPROX’02), volume 2462 of
LNCS, pages 161–174. Springer, 2002. → 5, 15

[Kar72] Richard M. Karp. Reducibility among combinatorial problems.
In R. Miller and J. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972. → 3

[KBH02] Arie M.C.A. Koster, Hans L. Bodlaender, and Stan P.M. Hoe-
sel. Treewidth: Computational experiments. Technical report,
Maastricht Research School of Economics of Technology and
Organization, Maastricht, Netherlands, 2002. → 24

[KKPS03] Jochen Könemann, Goran Konjevod, Ojas Parekh, and Amitabh
Sinha. Improved approximations for tour and tree covers. Al-
gorithmica, 38(3):441–449, 2003. → 17

[Klo94] Ton Kloks. Treewidth, Computations and Approximations, vol-
ume 842 of LNCS. Springer, 1994. → 25

[Knu05] Donald E. Knuth. The Art of Computer Programming, Vol-
ume 4, Fascicle 3: Generating All Combinations and Partitions.
Addison-Wesley Professional, 2005. → 43

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms.
Oxford University Press, forthcoming, 2006. → 6

69

[NR99] Rolf Niedermeier and Peter Rossmanith. Upper bounds for ver-
tex cover further improved. In Proceedings of the 16th Sympo-
sium on Theoretical Aspects of Computer Science (STACS’99),
volume 1563 of LNCS, pages 561–570. Springer, 1999. → 4

[NR03] Rolf Niedermeier and Peter Rossmanith. On efficient fixed-
parameter algorithms for weighted vertex cover. Journal of Al-
gorithms, 47(2):63–77, 2003. → 4, 5

[PS03] Elena Prieto and Christian Sloper. Either/or: Using vertex
cover structure in designing FPT-algorithms—the case of k-
internal spanning tree. In Proceedings of the 8th Workshop on
Algorithms and Data Structures (WADS’03), volume 2748 of
LNCS, pages 474–483. Springer, 2003. → 4

[Ree92] Bruce A. Reed. Finding approximate separators and computing
tree width quickly. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing (STOC’92), pages 221–
228. ACM Press, 1992. → 24

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. II. algo-
rithmic aspects of tree-width. Journal of Algorithms, 7(3):309–
322, 1986. → 6, 22

[San96] Daniel P. Sanders. On linear recognition of tree-width at most
four. SIAM Journal on Discrete Mathematics, 9(1):101–117,
1996. → 24

[Sch95] Berry Schoenmakers. A new algorithm for the recognition of
series parallel graphs. Technical report, CWI Amsterdam, The
Netherlands, 1995. → 45

[SLM+05] Yinglei Song, Chunmei Liu, Russell Malmberg, Fangfang Pan,
and Liming Cai. Tree decomposition based fast search of
RNA structures including pseudoknots in genomes. In Proceed-
ings of the 4th Computational Systems Bioinformatics Confer-
ence (CSB’05), pages 223–234. IEEE Computer Society, 2005.
→ 6

[TNS82] Kazuhiko Takamizawa, Takao Nishizeki, and Nobuji Saito.
Linear-time computability of combinatorial problems on series-
parallel graphs. Journal of the ACM, 29(3):623–641, 1982.
→ 43

70

[VTL82] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The
recognition of series parallel digraphs. SIAM Journal on Com-
puting, 11(2):298–313, 1982. → 45

[XJB05] Jinbo Xu, Feng Jiao, and Bonnie Berger. A tree-decomposition
approach to protein structure prediction. In Proceedings
of the 4th Computational Systems Bioinformatics Conference
(CSB’05), pages 247–256. IEEE Computer Society, 2005.
→ 6

71

Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Ver-
wendung der angegebenen Quellen und Hilfsmittel angefertigt habe.

Jena, den 09.11.2005 (Hannes Moser)

73

	Introduction
	Motivation
	Overview

	Preliminaries
	Basic Notation from Graph Theory
	Parameterized Complexity
	Fixed-Parameter Tractability
	Fixed-Parameter Intractability

	Generalizations of Vertex Cover
	Partial Vertex Cover
	Connected Vertex Cover
	Capacitated Vertex Cover
	Summary

	Dynamic Programming on Tree Decompositions
	Tree Decompositions
	Dynamic Programming on Tree Decompositions
	Partial Vertex Cover
	The Algorithm
	Analysis

	Connected Vertex Cover
	The Basic Idea
	The Algorithm
	Analysis
	How to Improve the Running Time

	Capacitated Vertex Cover
	Series-Parallel Graphs
	Dynamic Programming on SP-Trees
	Time Complexity
	CVC on Tree Decompositions

	Concluding Remarks

	Capacitated Vertex Cover on Trees
	Definitions and Preliminaries
	Fixed-Parameter Tractability
	An Algorithm for CVCDT (NOSPLIT)
	Splitting Demands

	Conclusion
	Summary
	Open Problems
	Acknowledgments

