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Motivation

Maximum Matching
“marriage problem“

Maximum Induced Matching
“risk-free marriage problem“
[Stockmeyer, Vazirani, IPL 15, 1982]
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Maximum Induced Matching

Input

An undirected graph G = (V ,E ) and a nonnegative integer k.

Question
Is there an edge subset M ⊆ E of size at least k, such that

1. M is a matching, and

2. no two edges of M are connected by an edge of G?
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Known Results (1)

NP-completeness on Restricted Graph Classes

I Planar graphs of maximum degree 4
[Ko, Shepherd, SIAM Journal on Discrete Mathematics 16, 2003]

I Bipartite graphs of maximum degree 3, C4-free bipartite
graphs
[Lozin, Information Processing Letters 81, 2002]

I Hamiltonian graphs, line-graphs, and r -regular graphs
for r ≥ 5
[Kobler, Rotics, Algorithmica 37, 2003]
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Known Results (2)

Polynomial-Time Solvable

I Trees
[Fricke, Laskar, Congressum Numerantium 89, 1992]

I Chordal graphs
[Cameron, Discrete Applied Mathematics 24, 1989]

I Weakly chordal graphs
[Cameron, Sritharan, Tang, Discrete Mathematics 266, 2003]

Approximation Results

I APX-hard on regular graphs
[Zito, WG’99]

I APX-hard on bipartite graphs of maximum degree 3,
factor-r approximation on r -regular graphs (r ≥ 3)
[Duckworth, Manlove, Zito, Journal of Discrete Algorithms 3, 2005]
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Fixed-Parameter Tractability

Definition
A problem is fixed-parameter tractable with respect to parameter k
if it can be solved in f (k) · poly(n) time.

Problem Kernel
Parameterized problem L. Instance (I , k).

(I ′, k ′)
reduction rules

(I , k)
poly(n) time

I (I , k) ∈ L ↔ (I ′, k ′) ∈ L

I k ′ ≤ k

I |I ′| ≤ g(k)

Linear Problem Kernel: g(k) = c · k for some constant c .

6



Fixed-Parameter Tractability

Definition
A problem is fixed-parameter tractable with respect to parameter k
if it can be solved in f (k) · poly(n) time.

Problem Kernel
Parameterized problem L. Instance (I , k).

(I ′, k ′)
reduction rules

(I , k)
poly(n) time

I (I , k) ∈ L ↔ (I ′, k ′) ∈ L

I k ′ ≤ k

I |I ′| ≤ g(k)

Linear Problem Kernel: g(k) = c · k for some constant c .

6



Fixed-Parameter Tractability Results

Known Result
Maximum Induced Matching parameterized by k is W[1]-hard
[M.,Thilikos, ACiD’06]

(W[1]-hard problems are presumably not fixed-parameter tractable)

Our Results

I A linear problem kernel in planar graphs.

I An improved dynamic programming on tree decompositions.
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Linear Problem Kernels in Planar Graphs

I Dominating Set
[Alber, Fellows, Niedermeier, Journal of the ACM 51, 2004]

I Improved Kernel for Dominating Set, lower bound for
kernel size
[Chen, Fernau, Kanj, Xia, STACS’05,

full version to appear in SIAM Journal on Computing]

I Full-Degree Spanning Tree
[Guo, Niedermeier, Wernicke, IWPEC’06]

I Dominating Set problems in graphs of bounded genus
[Fomin, Thilikos, ICALP’04]

I General kernelization framework
[Guo, Niedermeier, ICALP’07]
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The Data Reduction Rules

R0 Remove isolated vertices.

R1 For each vertex, remove all but one degree-one
neighbor.

R2 For each vertex pair remove all but one common
degree-two neighbor.
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Important Observations

I Every vertex has distance at most two to some vertex
in V (M).

I The set of vertices with distance exactly two induces an
edgeless graph.
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Region
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Region Decomposition
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Linear Kernel Proof Framework

Suppose we are given a maximum induced matching M for a
reduced graph.

1. Compute a “region decomposition” of the plane graph.

2. Show that there are only O(|M|) regions.

3. Show that in each region there is only a constant number of
vertices.

4. Show that there are only O(|M|) vertices outside of regions.
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Bounding the Size of a Region

Every vertex has distance at most two to some vertex in V (M)
⇒ Outerplanarity argument
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Resume

Discussion

I Easy, linear-time data reduction rules.

I Mathematical analysis is quite technical.

Future Work

I Improve the kernel size.

I Search tree algorithm?

I Generalization to non-planar graph classes?
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Thank you!
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