### Iterative Compression: Some Case Studies

Hannes Moser

Institut für Informatik Friedrich-Schiller-Universität Jena

Project ITKO (NI 369/5-1) DFG Schwerpunktprogramm 1126 – Jahreskolloquium 2007

# Parameterized Approach to Hard Problems

#### Exact algorithm: Exponential running time for NP-hard problems.

### Parameterized approach

Try to confine the combinatorial explosion to a parameter k.

### Fixed-Parameter Tractability

A problem is *fixed-parameter tractable* if it can be solved in  $f(k) \cdot n^{O(1)}$  time.

#### Example

VERTEX COVER can be solved in time  $O(1.28^k + k|V|)$ . k: size of the vertex cover

# Iterative Compression Framework

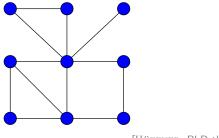
#### Idea

Use a *compression routine* iteratively: Given a solution of size k + 1, compute a solution of size k, or prove that is does not exist.

 $\left[\mathrm{REED},\ \mathrm{Smith},\ \text{and}\ \mathrm{Vetta},\ \text{Operations}\ \text{Research}\ \text{Letters}\ 32,\ 2004\right]$ 

Example: Cluster Vertex Deletion (CVD)

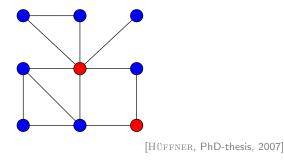
Input: A graph G = (V, E) and an integer k > 0. Question: Is there a subset  $S \subseteq V$  with  $|S| \le k$  such that every connected component of  $G[V \setminus S]$  is a clique?



[HÜFFNER, PhD-thesis, 2007]

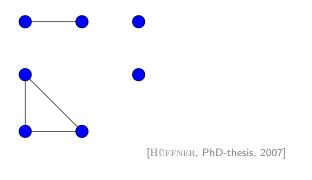
Example: Cluster Vertex Deletion (CVD)

Input: A graph G = (V, E) and an integer k > 0. Question: Is there a subset  $S \subseteq V$  with  $|S| \le k$  such that every connected component of  $G[V \setminus S]$  is a clique?

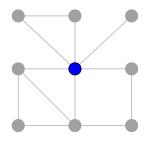


Example: Cluster Vertex Deletion (CVD)

Input: A graph G = (V, E) and an integer k > 0. Question: Is there a subset  $S \subseteq V$  with  $|S| \le k$  such that every connected component of  $G[V \setminus S]$  is a clique?

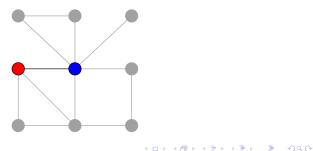


- 1.  $V' := \emptyset$ 2.  $S := \emptyset$ 3. While  $G[V'] \neq G$ 3.1 Augment V' by adding a vertex v from  $V \setminus V'$ 3.2  $S := S \cup \{v\}$ 3.3 S := CVD-COMPRESS(G[V'], S)3.4 If |S| > k return "NO"
  - 4. Return S



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

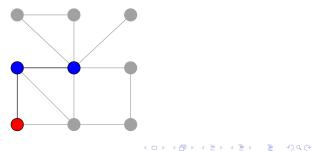
- 1.  $V' := \emptyset$ 2.  $S := \emptyset$ 3. While  $G[V'] \neq G$ 3.1 Augment V' by adding a vertex v from  $V \setminus V'$ 3.2  $S := S \cup \{v\}$ 3.3 S := CVD-COMPRESS(G[V'], S)3.4 If |S| > k return "NO"
  - 4. Return S



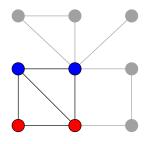
- 1.  $V' := \emptyset$ 2.  $S := \emptyset$ 3. While  $G[V'] \neq G$ 3.1 Augment V' by adding a vertex v from  $V \setminus V'$ 3.2  $S := S \cup \{v\}$ 3.3 S := CVD-COMPRESS(G[V'], S)3.4 If |S| > k return "NO"
  - 4. Return S



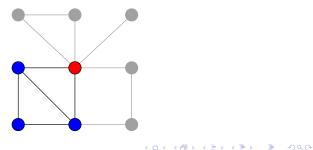
- 1.  $V' := \emptyset$ 2.  $S := \emptyset$ 3. While  $G[V'] \neq G$ 3.1 Augment V' by adding a vertex v from  $V \setminus V'$ 3.2  $S := S \cup \{v\}$ 3.3 S := CVD-COMPRESS(G[V'], S)3.4 If |S| > k return "NO"
  - 4. Return S



- 1.  $V' := \emptyset$ 2.  $S := \emptyset$ 3. While  $G[V'] \neq G$ 3.1 Augment V' by adding a vertex v from  $V \setminus V'$ 3.2  $S := S \cup \{v\}$ 3.3 S := CVD-COMPRESS(G[V'], S)3.4 If |S| > k return "NO"
  - 4. Return S

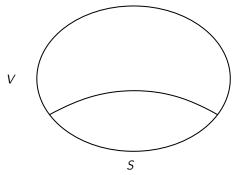


- 1.  $V' := \emptyset$ 2.  $S := \emptyset$ 3. While  $G[V'] \neq G$ 3.1 Augment V' by adding a vertex v from  $V \setminus V'$ 3.2  $S := S \cup \{v\}$ 3.3 S := CVD-COMPRESS(G[V'], S)3.4 If |S| > k return "NO"
  - 4. Return S



### Approach

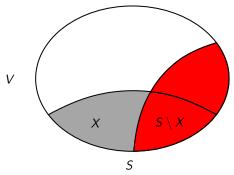
Try all  $2^{|S|}$  partitions of S into a part to keep in the new solution and a part to exchange.



・ロト ・聞ト ・ヨト ・ヨト

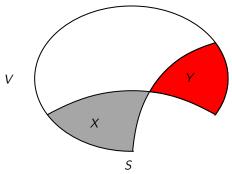
### Approach

Try all  $2^{|S|}$  partitions of S into a part to keep in the new solution and a part to exchange.



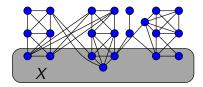
#### Approach

Try all  $2^{|S|}$  partitions of S into a part to keep in the new solution and a part to exchange.

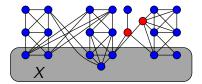


#### Simplified Problem

Given a solution X, compute a smaller *disjoint* solution Y.

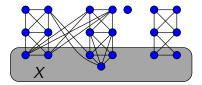


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



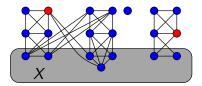
▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



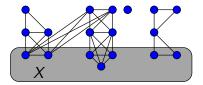
▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

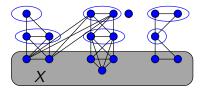


- ▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.
- ▶ Delete vertices in V \ X that are not adjacent to all vertices of a cluster in X.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

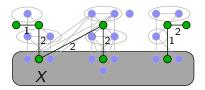


- ▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.
- ▶ Delete vertices in V \ X that are not adjacent to all vertices of a cluster in X.

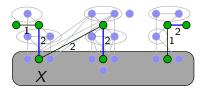


- ▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.
- ▶ Delete vertices in V \ X that are not adjacent to all vertices of a cluster in X.

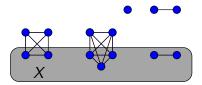
Classify the vertices in each cluster in V \ X by their neighboring clusters in X.



- ▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.
- ▶ Delete vertices in V \ X that are not adjacent to all vertices of a cluster in X.
- Classify the vertices in each cluster in V \ X by their neighboring clusters in X.
- Generate a bipartite dependency graph; a maximum-weight matching represents an optimal solution.



- ▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.
- ▶ Delete vertices in V \ X that are not adjacent to all vertices of a cluster in X.
- Classify the vertices in each cluster in V \ X by their neighboring clusters in X.
- Generate a bipartite dependency graph; a maximum-weight matching represents an optimal solution.



- ▶ Delete all vertices in V \ X that are adjacent to more than one cluster in X.
- ▶ Delete vertices in V \ X that are not adjacent to all vertices of a cluster in X.
- Classify the vertices in each cluster in V \ X by their neighboring clusters in X.
- Generate a bipartite dependency graph; a maximum-weight matching represents an optimal solution.

# Iterative Compression for Cluster Vertex Deletion - Analysis

- ▶ The iteration calls the compression up to *n* times.
- The compression tries all  $O(2^k)$  partitions of a given solution.

The remaining task to compute a *disjoint* solution can be performed in polynomial time.

# Iterative Compression for Cluster Vertex Deletion - Analysis

- ▶ The iteration calls the compression up to *n* times.
- The compression tries all  $O(2^k)$  partitions of a given solution.
- The remaining task to compute a *disjoint* solution can be performed in polynomial time.

### Overall running time

- $\blacktriangleright O(2^k \cdot n^{O(1)})$
- Best known running time so far O(2.08<sup>k</sup> · n<sup>O(1)</sup>) (via reduction to 3-HITTING SET, which can be solved by a rather involved algorithm [WAHLSTRÖM, PhD-thesis, 2007])

# Applications of Iterative Compression

► GRAPH BIPARTIZATION *O*(3<sup>*k*</sup>*kmn*)

 $\left[\mathrm{REED}, \; \mathrm{SMITH}, \; \text{and} \; \mathrm{VETTA}, \; \text{Operations Research Letters 32, 2004}\right]$ 

• Edge Bipartization  $O(2^k m^2)$ 

 $\left[\mathrm{Guo,\ Gramm,\ H\"{u}ffner,\ Niedermeier,\ and\ Wernicke,\ JCSS\ 72,\ 2006}\right]$ 

# • FEEDBACK VERTEX SET $O(c^k m)$

[Dehne, Fellows, Langston, Rosamond, and Stevens, COCOON 2005][Guo, Gramm, Hüffner, Niedermeier, and Wernicke, JCSS 72, 2006][Chen, Fomin, Liu, Lu, and Villanger, WADS 2007]

► FEEDBACK VERTEX SET IN TOURNAMENTS  $O(2^k n^2 (\lg n + k))$ 

 $[\mathrm{Dom},\,\mathrm{Guo},\,\mathrm{H\ddot{u}ffner},\,\mathrm{Niedermeier},\,\mathsf{and}\,\mathrm{Truss},\,\mathsf{CIAC}\;2006]$ 

CHORDAL DELETION

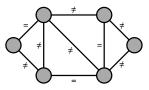
 $\left[\mathrm{Marx}\text{, WG 2006}\right]$ 

 Implementation of GRAPH BIPARTIZATION O(3<sup>k</sup>mn) [HÜFFNER, WEA 2005]

Experimental results for SIGNED GRAPH BALANCING [HÜFFER, BETZLER, and NIEDERMEIER, WEA 2007]

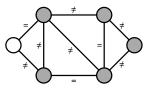
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



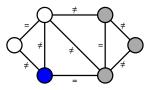
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



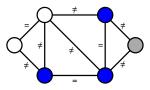
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



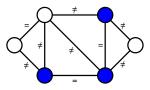
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



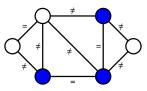
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



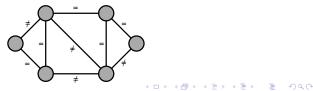
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



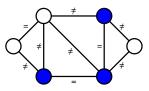
#### Task

Find a minimum number of edges whose deletion makes the signed graph balanced.



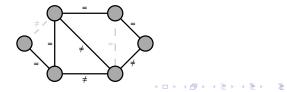
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



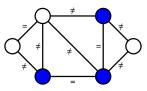
#### Task

Find a minimum number of edges whose deletion makes the signed graph balanced.



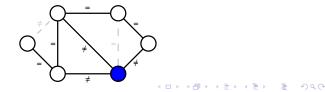
### Definition

A graph with edges labeled by = or  $\neq$  (signed graph) is balanced if the vertices can be colored with two colors such that the relation on each edge holds.



#### Task

Find a minimum number of edges whose deletion makes the signed graph balanced.



# Applications of Balanced Subgraph

#### Balance in social networks

[HARARY, Mich. Math. J. 1953]

#### Portfolio risk analysis

[HARARY et al., IMA J. Manag. Math. 2002]

 Minimum energy state of magnetic materials (spin glasses) [KASTELEYN, J. Math. Phys. 1963]

#### Stability of fullerenes

[Došlić&Vikičević, Discr. Appl. Math. 2007]

#### Integrated circuit design

[CHIANG et al., IEEE Trans. CAD of IC&Sys. 2007]

 "Monotone subsystems" in biological networks [DasGupta et al., WEA 2006]

# Signed Graph Balancing: Experimental Results

|          |     |      | Approximation                                      |          | Exact alg. |                                                  |         |  |
|----------|-----|------|----------------------------------------------------|----------|------------|--------------------------------------------------|---------|--|
|          |     |      | $\left[\mathrm{DAsGUPTA}\xspace$ et al., WEA 2006] |          |            | $[\mathrm{H\ddot{u}FFNER}\ et\ al.,\ WEA\ 2007]$ |         |  |
| Data set | n   | т    | $k \ge$                                            | $k \leq$ | t [min]    | k                                                | t [min] |  |
| EGFR     | 330 | 855  | 196                                                | 219      | 7          | 210                                              | 108     |  |
| Yeast    | 690 | 1082 | 0                                                  | 43       | 77         | 41                                               | 1       |  |
| Macr.    | 678 | 1582 | 218                                                | 383      | 44         | 374                                              | 1       |  |

 A real-world network with 688 vertices and 2208 edges could not be solved.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

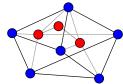
When is Iterative Compression Applicable?

Two representative problems

Input: Graph G = (V, E), parameter k > 0, integer constant  $r \ge 0$ .

r-Regular Deletion

Question: Is there a subset  $S \subseteq V$ ,  $|S| \leq k$ , such that every vertex in  $G[V \setminus S]$  has degree *exactly r*?



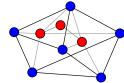
When is Iterative Compression Applicable?

Two representative problems

Input: Graph G = (V, E), parameter k > 0, integer constant  $r \ge 0$ .

r-Regular Deletion

Question: Is there a subset  $S \subseteq V$ ,  $|S| \leq k$ , such that every vertex in  $G[V \setminus S]$  has degree *exactly r*?



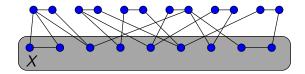
#### Maxdeg-r-Deletion

Question: Is there a subset  $S \subseteq V$ ,  $|S| \leq k$ , such that every vertex in  $G[V \setminus S]$  has degree at most r?

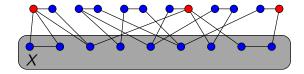


э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

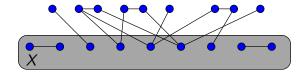


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで



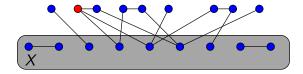
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

#### For every edge in X remove all its neighbors in $V \setminus X$ .

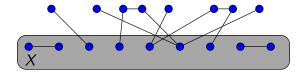


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

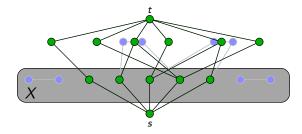
#### For every edge in X remove all its neighbors in $V \setminus X$ .



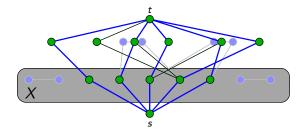
- For every edge in X remove all its neighbors in  $V \setminus X$ .
- Remove all vertices in V \ X with more than one neighbor in X.



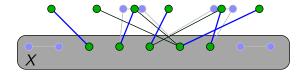
- For every edge in X remove all its neighbors in  $V \setminus X$ .
- Remove all vertices in V \ X with more than one neighbor in X.



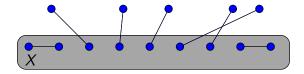
- For every edge in X remove all its neighbors in  $V \setminus X$ .
- Remove all vertices in V \ X with more than one neighbor in X.
- Build a dependency graph; a max-flow solution represents an optimal solution.



- For every edge in X remove all its neighbors in  $V \setminus X$ .
- Remove all vertices in V \ X with more than one neighbor in X.
- Build a dependency graph; a max-flow solution represents an optimal solution.



- For every edge in X remove all its neighbors in  $V \setminus X$ .
- Remove all vertices in V \ X with more than one neighbor in X.
- Build a dependency graph; a max-flow solution represents an optimal solution.



- For every edge in X remove all its neighbors in  $V \setminus X$ .
- Remove all vertices in V \ X with more than one neighbor in X.
- Build a dependency graph; a max-flow solution represents an optimal solution.

















Iteration becomes difficult



Compression becomes hard

#### Theorem

Finding a smaller disjoint solution for 2-REGULAR DELETION is NP-hard.

Proof approach: Reduction from 1-in-3-SAT.

# Overview

|                                    | search tree             | find disj. sol.             | iterative compr.        |
|------------------------------------|-------------------------|-----------------------------|-------------------------|
| 1-Regular<br>Del.<br>maxdeg-1-del. | $O(3^k \cdot n^{O(1)})$ | P (Maxflow)<br>P (Matching) | $O(2^k \cdot n^{O(1)})$ |
| 2-Regular<br>Del.<br>Maxdeg-2-del. | $O(4^k \cdot n^{O(1)})$ | NP-hard<br>?                | ?<br>√                  |

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

### Discussion

#### Advantages

 Problem simplification: Improve a solution instead of computing an optimal solution directly.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Derivation of structural information.

# Discussion

#### Advantages

 Problem simplification: Improve a solution instead of computing an optimal solution directly.

• Derivation of structural information.

#### Drawbacks

- "Bottleneck" 2<sup>k</sup> (try all partitions).
- Design of compression routine challenging.

## Discussion

#### Advantages

- Problem simplification: Improve a solution instead of computing an optimal solution directly.
- Derivation of structural information.

#### Drawbacks

- "Bottleneck" 2<sup>k</sup> (try all partitions).
- Design of compression routine challenging.

#### **Ongoing Work**

- Characterize problems amenable to iterative compression.
- Combination with other techniques (e.g., approximation).

#### Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>