
Iterative Compression: Some Case Studies

Hannes Moser

Institut für Informatik
Friedrich-Schiller-Universität Jena

Project ITKO (NI 369/5-1)
DFG Schwerpunktprogramm 1126 – Jahreskolloquium 2007

Parameterized Approach to Hard Problems

Exact algorithm: Exponential running time for NP-hard problems.

Parameterized approach

Try to confine the combinatorial explosion to a parameter k.

Fixed-Parameter Tractability

A problem is fixed-parameter tractable if it can be solved
in f (k) · nO(1) time.

Example

Vertex Cover can be solved in time O(1.28k + k|V |).
k: size of the vertex cover

Iterative Compression Framework

Idea
Use a compression routine iteratively:
Given a solution of size k + 1, compute a solution of size k, or
prove that is does not exist.
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

Example: Cluster Vertex Deletion (CVD)

Input: A graph G = (V ,E) and an integer k > 0.

Question: Is there a subset S ⊆ V with |S | ≤ k such that every
connected component of G [V \ S] is a clique?

[Hüffner, PhD-thesis, 2007]

Example: Cluster Vertex Deletion (CVD)

Input: A graph G = (V ,E) and an integer k > 0.

Question: Is there a subset S ⊆ V with |S | ≤ k such that every
connected component of G [V \ S] is a clique?

[Hüffner, PhD-thesis, 2007]

Example: Cluster Vertex Deletion (CVD)

Input: A graph G = (V ,E) and an integer k > 0.

Question: Is there a subset S ⊆ V with |S | ≤ k such that every
connected component of G [V \ S] is a clique?

[Hüffner, PhD-thesis, 2007]

Iteration for Cluster Vertex Deletion

1. V ′ := ∅
2. S := ∅
3. While G [V ′] 6= G

3.1 Augment V ′ by adding a vertex v from V \ V ′

3.2 S := S ∪ {v}
3.3 S := CVD-Compress(G [V ′],S)
3.4 If |S | > k return “NO”

4. Return S

Iteration for Cluster Vertex Deletion

1. V ′ := ∅
2. S := ∅
3. While G [V ′] 6= G

3.1 Augment V ′ by adding a vertex v from V \ V ′

3.2 S := S ∪ {v}
3.3 S := CVD-Compress(G [V ′],S)
3.4 If |S | > k return “NO”

4. Return S

Iteration for Cluster Vertex Deletion

1. V ′ := ∅
2. S := ∅
3. While G [V ′] 6= G

3.1 Augment V ′ by adding a vertex v from V \ V ′

3.2 S := S ∪ {v}
3.3 S := CVD-Compress(G [V ′],S)
3.4 If |S | > k return “NO”

4. Return S

Iteration for Cluster Vertex Deletion

1. V ′ := ∅
2. S := ∅
3. While G [V ′] 6= G

3.1 Augment V ′ by adding a vertex v from V \ V ′

3.2 S := S ∪ {v}
3.3 S := CVD-Compress(G [V ′],S)
3.4 If |S | > k return “NO”

4. Return S

Iteration for Cluster Vertex Deletion

1. V ′ := ∅
2. S := ∅
3. While G [V ′] 6= G

3.1 Augment V ′ by adding a vertex v from V \ V ′

3.2 S := S ∪ {v}
3.3 S := CVD-Compress(G [V ′],S)
3.4 If |S | > k return “NO”

4. Return S

Iteration for Cluster Vertex Deletion

1. V ′ := ∅
2. S := ∅
3. While G [V ′] 6= G

3.1 Augment V ′ by adding a vertex v from V \ V ′

3.2 S := S ∪ {v}
3.3 S := CVD-Compress(G [V ′],S)
3.4 If |S | > k return “NO”

4. Return S

Compression for Cluster Vertex Deletion

Approach

Try all 2|S | partitions of S into a part to keep in the new solution
and a part to exchange.

V

S

Simplified Problem

Given a solution X , compute a smaller disjoint solution Y .

Compression for Cluster Vertex Deletion

Approach

Try all 2|S | partitions of S into a part to keep in the new solution
and a part to exchange.

X S \ X

V

S

Simplified Problem

Given a solution X , compute a smaller disjoint solution Y .

Compression for Cluster Vertex Deletion

Approach

Try all 2|S | partitions of S into a part to keep in the new solution
and a part to exchange.

X

Y

S

V

Simplified Problem

Given a solution X , compute a smaller disjoint solution Y .

Compression for Cluster Vertex Deletion

X

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

2
2

2 1
21

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

2
2

2 1
21

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Compression for Cluster Vertex Deletion

X

I Delete all vertices in V \ X that are adjacent to more than
one cluster in X .

I Delete vertices in V \ X that are not adjacent to all vertices
of a cluster in X .

I Classify the vertices in each cluster in V \ X by their
neighboring clusters in X .

I Generate a bipartite dependency graph; a maximum-weight
matching represents an optimal solution.

Iterative Compression for Cluster Vertex Deletion - Analysis

I The iteration calls the compression up to n times.

I The compression tries all O(2k) partitions of a given solution.

I The remaining task to compute a disjoint solution can be
performed in polynomial time.

Overall running time

I O(2k · nO(1))

I Best known running time so far O(2.08k · nO(1))
(via reduction to 3-Hitting Set, which can be solved by a
rather involved algorithm [Wahlström, PhD-thesis, 2007])

Iterative Compression for Cluster Vertex Deletion - Analysis

I The iteration calls the compression up to n times.

I The compression tries all O(2k) partitions of a given solution.

I The remaining task to compute a disjoint solution can be
performed in polynomial time.

Overall running time

I O(2k · nO(1))

I Best known running time so far O(2.08k · nO(1))
(via reduction to 3-Hitting Set, which can be solved by a
rather involved algorithm [Wahlström, PhD-thesis, 2007])

Applications of Iterative Compression
I Graph Bipartization O(3kkmn)

[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

I Edge Bipartization O(2km2)
[Guo, Gramm, Hüffner, Niedermeier, and Wernicke, JCSS 72, 2006]

I Feedback Vertex Set O(ckm)
[Dehne, Fellows, Langston, Rosamond, and Stevens, COCOON 2005]

[Guo, Gramm, Hüffner, Niedermeier, and Wernicke, JCSS 72, 2006]

[Chen, Fomin, Liu, Lu, and Villanger, WADS 2007]

I Feedback Vertex Set in Tournaments
O(2kn2(lg n + k))
[Dom, Guo, Hüffner, Niedermeier, and Truß, CIAC 2006]

I Chordal Deletion
[Marx, WG 2006]

I Implementation of Graph Bipartization O(3kmn)
[Hüffner, WEA 2005]

I Experimental results for Signed Graph Balancing
[Hüffer, Betzler, and Niedermeier, WEA 2007]

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

/=

/=

/=

/=

=

=

=

=

=

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

/=

/=

/=

/=

=

=

=

=

=

Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or 6= (signed graph) is balanced if
the vertices can be colored with two colors such that the relation
on each edge holds.

/=
/=

/=

/=

/=

/==

=

=

Task
Find a minimum number of edges whose deletion makes the signed
graph balanced.

/=

/=

/=

/=

=

=

=

=

=

Applications of Balanced Subgraph

I Balance in social networks
[Harary, Mich. Math. J. 1953]

I Portfolio risk analysis
[Harary et al., IMA J. Manag. Math. 2002]

I Minimum energy state of magnetic materials (spin glasses)
[Kasteleyn, J. Math. Phys. 1963]

I Stability of fullerenes
[Došlić&Vikičević, Discr. Appl. Math. 2007]

I Integrated circuit design
[Chiang et al., IEEE Trans. CAD of IC&Sys. 2007]

I “Monotone subsystems” in biological networks
[DasGupta et al., WEA 2006]

Signed Graph Balancing: Experimental Results

Approximation Exact alg.
[DasGupta et al., WEA 2006] [Hüffner et al., WEA 2007]

Data set n m k ≥ k ≤ t [min] k t [min]

EGFR 330 855 196 219 7 210 108
Yeast 690 1082 0 43 77 41 1
Macr. 678 1582 218 383 44 374 1

I A real-world network with 688 vertices and 2208 edges could
not be solved.

When is Iterative Compression Applicable?

Two representative problems

Input: Graph G = (V ,E), parameter k > 0, integer
constant r ≥ 0.

r-Regular Deletion

Question: Is there a subset S ⊆ V , |S | ≤ k, such
that every vertex in G [V \ S] has
degree exactly r?

Maxdeg-r-Deletion

Question: Is there a subset S ⊆ V , |S | ≤ k, such
that every vertex in G [V \ S] has
degree at most r?

When is Iterative Compression Applicable?

Two representative problems

Input: Graph G = (V ,E), parameter k > 0, integer
constant r ≥ 0.

r-Regular Deletion

Question: Is there a subset S ⊆ V , |S | ≤ k, such
that every vertex in G [V \ S] has
degree exactly r?

Maxdeg-r-Deletion

Question: Is there a subset S ⊆ V , |S | ≤ k, such
that every vertex in G [V \ S] has
degree at most r?

Compression for 1-Regular Deletion

X

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

t

s

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

t

s

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

Compression for 1-Regular Deletion

X

I For every edge in X remove all its neighbors in V \ X .

I Remove all vertices in V \ X with more than one neighbor
in X .

I Build a dependency graph; a max-flow solution represents an
optimal solution.

2-Regular Deletion

Iteration becomes difficult

Compression becomes hard

Theorem
Finding a smaller disjoint solution for 2-Regular Deletion is
NP-hard.

Proof approach: Reduction from 1-in-3-SAT.

2-Regular Deletion

Iteration becomes difficult

Compression becomes hard

Theorem
Finding a smaller disjoint solution for 2-Regular Deletion is
NP-hard.

Proof approach: Reduction from 1-in-3-SAT.

2-Regular Deletion

Iteration becomes difficult

Compression becomes hard

Theorem
Finding a smaller disjoint solution for 2-Regular Deletion is
NP-hard.

Proof approach: Reduction from 1-in-3-SAT.

2-Regular Deletion

Iteration becomes difficult

Compression becomes hard

Theorem
Finding a smaller disjoint solution for 2-Regular Deletion is
NP-hard.

Proof approach: Reduction from 1-in-3-SAT.

2-Regular Deletion

Iteration becomes difficult

Compression becomes hard

Theorem
Finding a smaller disjoint solution for 2-Regular Deletion is
NP-hard.

Proof approach: Reduction from 1-in-3-SAT.

Overview

search tree find disj. sol. iterative compr.

1-Regular
Del.
maxdeg-1-del.

O(3k · nO(1))
P (Maxflow)
P (Matching)

O(2k · nO(1))

2-Regular
Del.
maxdeg-2-del.

O(4k · nO(1))
NP-hard
?

?√

Discussion

Advantages

I Problem simplification: Improve a solution instead of
computing an optimal solution directly.

I Derivation of structural information.

Drawbacks

I “Bottleneck” 2k (try all partitions).

I Design of compression routine challenging.

Ongoing Work

I Characterize problems amenable to iterative compression.

I Combination with other techniques (e.g., approximation).

Discussion

Advantages

I Problem simplification: Improve a solution instead of
computing an optimal solution directly.

I Derivation of structural information.

Drawbacks

I “Bottleneck” 2k (try all partitions).

I Design of compression routine challenging.

Ongoing Work

I Characterize problems amenable to iterative compression.

I Combination with other techniques (e.g., approximation).

Discussion

Advantages

I Problem simplification: Improve a solution instead of
computing an optimal solution directly.

I Derivation of structural information.

Drawbacks

I “Bottleneck” 2k (try all partitions).

I Design of compression routine challenging.

Ongoing Work

I Characterize problems amenable to iterative compression.

I Combination with other techniques (e.g., approximation).

Thank you!

