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Parameterized Approach to Hard Problems

Exact algorithm: Exponential running time for NP-hard problems.

Parameterized approach
Try to confine the combinatorial explosion to a parameter k.

Fixed-Parameter Tractability

A problem is fixed-parameter tractable if it can be solved
in £(k) - n°M time.

Example

VERTEX COVER can be solved in time O(1.28% + k|V/|).
k: size of the vertex cover



Iterative Compression Framework

Idea

Use a compression routine iteratively:

Given a solution of size k + 1, compute a solution of size k, or
prove that is does not exist.

[REED, SMITH, and VETTA, Operations Research Letters 32, 2004]



Example: Cluster Vertex Deletion (CVD)

Input: A graph G = (V, E) and an integer k > 0.
Question: Is there a subset S C V with |S| < k such that every
connected component of G[V \ S] is a clique?

[HUFFNER, PhD-thesis, 2007]
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[teration for Cluster Vertex Deletion

1. V=10
2.5:=10
3. While G[V'] # G
3.1 Augment V' by adding a vertex v from V \ V'’
32 S:=SU{v}
3.3 §:= CVD-CoMPRESS(G[V'], S)
3.4 If |S]| > k return “NO”

4. Return S
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Compression for Cluster Vertex Deletion

Approach

Try all 2/5! partitions of S into a part to keep in the new solution
and a part to exchange.
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Approach

Try all 291 partitions of S into a part to keep in the new solution
and a part to exchange.

Simplified Problem
Given a solution X, compute a smaller disjoint solution Y.
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» Delete all vertices in V' \ X that are adjacent to more than
one cluster in X.
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Iterative Compression for Cluster Vertex Deletion - Analysis

» The iteration calls the compression up to n times.
» The compression tries all O(2k) partitions of a given solution.

» The remaining task to compute a disjoint solution can be
performed in polynomial time.



Iterative Compression for Cluster Vertex Deletion - Analysis

» The iteration calls the compression up to n times.
» The compression tries all O(2k) partitions of a given solution.

» The remaining task to compute a disjoint solution can be
performed in polynomial time.

Overall running time

» O(2k . no(M)
» Best known running time so far 0(2.08% - n9(1))

(via reduction to 3-HITTING SET, which can be solved by a
rather involved algorithm [Wanistron, PhD-thesis, 2007])



Applications of Iterative Compression

>

GRAPH BIPARTIZATION O(3*kmn)

[REED, SMITH, and VETTA, Operations Research Letters 32, 2004]
EDGE BIPARTIZATION O(2Xm?)

[Guo, GRAMM, HUFFNER, NIEDERMEIER, and WERNICKE, JCSS 72, 2006]
FEEDBACK VERTEX SET O(ckm)

[DEHNE, FELLOWS, LANGSTON, ROSAMOND, and STEVENS, COCOON 2005]
[Guo, GrRaMM, HUFFNER, NIEDERMEIER, and WERNICKE, JCSS 72, 2006]
[CHEN, FoMmIN, Liu, Lu, and VILLANGER, WADS 2007]

FEEDBACK VERTEX SET IN TOURNAMENTS

0(2kn?(Ig n + k))

[Dom, Guo, HUFFNER, NIEDERMEIER, and TRruss, CIAC 2006]
CHORDAL DELETION

[MARX, WG 2006]

Implementation of GRAPH BIPARTIZATION O(3%mn)
[HUFFNER, WEA 2005]

Experimental results for SIGNED GRAPH BALANCING

[HUFFER, BETZLER, and NIEDERMEIER, WEA 2007]



Recent Application: Signed Graph Balancing

Definition
A graph with edges labeled by = or # (signed graph) is balanced if
the vertices can be colored with two colors such that the relation

on each edge holds.
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Applications of Balanced Subgraph

» Balance in social networks
[HARARY, Mich. Math. J. 1953]

» Portfolio risk analysis
[HARARY et al., IMA J. Manag. Math. 2002]

» Minimum energy state of magnetic materials (spin glasses)
[KASTELEYN, J. Math. Phys. 1963]

» Stability of fullerenes
[DOSLIC& VIKICEVIC, Discr. Appl. Math. 2007]
» Integrated circuit design
[CHIANG et al., IEEE Trans. CAD of IC&Sys. 2007]

» “Monotone subsystems” in biological networks
[DasGupTa et al., WEA 2006]



Signed Graph Balancing: Experimental Results

Approximation Exact alg.

[DASGUPTA et al., WEA 2006] [HUFFNER et al., WEA 2007]
Dataset n m k> k< t [min] k t [min]
EGFR 330 855 196 219 7 210 108
Yeast 690 1082 0 43 77 41 1
Macr. 678 1582 218 383 44 374 1

» A real-world network with 688 vertices and 2208 edges could
not be solved.



When is lterative Compression Applicable?

Two representative problems

Input: Graph G = (V/, E), parameter k > 0, integer
constant r > 0.

r-REGULAR DELETION

Question: Is there a subset S C V, |S| < k, such
that every vertex in G[V \ S] has
degree exactly r?
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Two representative problems

Input: Graph G = (V/, E), parameter k > 0, integer
constant r > 0.

r-REGULAR DELETION

Question: Is there a subset S C V, |S| < k, such
that every vertex in G[V \ S] has
degree exactly r?

MAXDEG-r-DELETION

Question: Is there a subset S C V, |S| < k, such
that every vertex in G[V' \ 5] has
degree at most r?
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» For every edge in X remove all its neighbors in V' \ X.

» Remove all vertices in V' \ X with more than one neighbor
in X.

» Build a dependency graph; a max-flow solution represents an
optimal solution.
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2-REGULAR DELETION
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2-REGULAR DELETION

[teration becomes difficult

Compression becomes hard

Theorem

Finding a smaller disjoint solution for 2-REGULAR DELETION is
NP-hard.

Proof approach: Reduction from 1-in-3-SAT.



Overview

search tree find disj. sol. iterative compr.
1-REGULAR
P (Maxflow)

k. p0(1) k. n001)
DEL. O(3% - n®) P (Matching) O(2% - n®))
MAXDEG-1-DEL.
2-REGULAR 2
DEL. O(4k . n°() QIP—hard \/

MAXDEG-2-DEL.
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> “Bottleneck” 2k (try all partitions).

» Design of compression routine challenging.

Ongoing Work

» Characterize problems amenable to iterative compression.

» Combination with other techniques (e.g., approximation).



Thank you!



