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Parameterized Approach to Hard Problems

We want an exact algorithm, but that implies exponential runtime.

Parameterized approach

Try to confine the combinatorial explosion to a parameter k.

Fixed-Parameter Tractability

A problem is fixed-parameter tractable if it can be solved
in O(f(k) - n°) time.

Example

VERTEX COVER can be solved in time O(1.2852% + k|V/|).
k: size of the vertex cover



Techniques to Show Fixed-Parameter Tractability

Established Techniques

» Kernelizations

» Depth-bounded search trees
» Dynamic Programming

» Tree Decompositions

> ...

Recent Approach

» [terative compression
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In terms of a minimization problem on graphs

Compute a solution X for a problem instance (G, k) using the
information provided by a solution X’ for a subinstance (G — v, k).

Example for this talk

FEEDBACK VERTEX SET IN TOURNAMENTS.
[Dom, Guo, HUFFNER, NIEDERMEIER, AND TRuss, CIAC 2006]
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FEEDBACK VERTEX SET IN TOURNAMENTS

Definition (FEEDBACK VERTEX SET IN TOURNAMENTS)

Input: Tournament G = (V/, E), integer k > 0.

Output: Is there a subset X C V of at most k vertices such
that G[V \ X] has no cycles?

FEEDBACK VERTEX SET IN TOURNAMENTS is NP-complete
[SPECKENMEYER, WG 1989]
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Iterative Compression Framework

Idea

Use a compression routine iteratively: Given a solution of
size k 4+ 1, compute a solution of size k.

[REED, SMITH, AND VETTA, Operations Research Letters 32, 2004]

Iterative Compression Framework for Feedback Vertex Set in
Tournaments

1. Start with an empty graph G’ and an empty solution X.

2. For each vertex v in G:

2.1 Add v to G’ and to X.
2.2 Use the compression routine to compress X.
2.3 If |[X| > k, then return “NO”.

Invariant during the loop:
X is a solution of size at most k for the current graph G’.



Compression Routine (1)

Task
Given a solution X of size k + 1, compute a solution X’ of size k.



Compression Routine (1)

Task
Given a solution X of size k + 1, compute a solution X’ of size k.

Approach
Try all 2/XI partitions of X into a part to exchange (S) and a part
to keep (X'\ S).



Compression Routine (1)

Task
Given a solution X of size k + 1, compute a solution X’ of size k.

Approach
Try all 2/XI partitions of X into a part to exchange (S) and a part
to keep (X'\ S).



Compression Routine (1)

Task

Given a solution X of size k + 1, compute a solution X’ of size k.

Approach
Try all 21X| partitions of X into a part to exchange (S) and a part
to keep (X'\ S).




Compression Routine (1)

Task

Given a solution X of size k + 1, compute a solution X’ of size k.
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Compression Routine (2)

-

X

(Lemma: A tournament contains a cycle iff it contains a triangle.)



Topological Sorts

> G[S] is cycle-free =

S has topological sort sy, .

> G[V\ S] is cycle-free =

V' \ S has topological sort.

..,5|5|.
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Topological Sorts
> G[S] is cycle-free = v
S has topological sort si, ..., 55| @
> G[V\ 5] is cycle-free = e
X

V' \ S has topological sort.

//\\\

S 9 00 @

V\S (@ - @

Goal: Insert a maximum subset of V' \ S into s1,..., 55/

Observation: Every vertex v of V'\ S has a “natural position” p(v)
relative to the vertices of 5.



Longest Common Subsequence
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Longest Common Subsequence
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The vertices (V \ S) \ F must be sortable in such a way that
» the topological sort of V' \ S is preserved, and
» the sort of V' \ S by “natural position” p is preserved.

= Search for the longest common subsequence of both sorts.
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Example

» V\ S sorted topologically: abcde
» V' \ S sorted by p: abdce
» A longest common subsequence is abce

b c d e
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Example

» V\ S sorted topologically: abcde
» V' \ S sorted by p: abdce
» A longest common subsequence is abce

b

V\s (@ ~@ —~@—~@
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Overall Running Time

Time consumption:

» n iterations of the compression routine;
» 2k*+1 partitions per iteration;

» time O(n - k) for destroying triangles, time O(nlog n) for
sorting vertices and finding the longest common subsequence.

Running time for solving FEEDBACK VERTEX SET IN
TOURNAMENTS:

O(2k - n?(log n + k))
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Applications of Iterative Compression
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GRAPH BIPARTIZATION O(3Xkmn)

[REED, SMITH, AND VETTA, Operations Research Letters 32, 2004]

EDGE BIPARTIZATION O(2%m?)

[Guo, GRaAMM, HUFFNER, NIEDERMEIER, AND WERNICKE, WADS 2005]
FEEDBACK VERTEX SET O(ckm)

[DEHNE, FELLOWS, LANGSTON, ROSAMOND, AND STEVENS, COCOON 2005]
[Guo, GrRAMM, HUFFNER, NIEDERMEIER, AND WERNICKE, WADS 2005]
FEEDBACK VERTEX SET IN TOURNAMENTS
O(2kn%(Ig n + k))

[Dom, Guo, HUFFNER, NIEDERMEIER, AND TRUSS, CIAC 2006]
CHORDAL DELETION

[MARrX, WG 2006]

Implementation of GRAPH BIPARTIZATION O(3%mn)
[HUFFNER, WEA 2005]



Discussion
Advantages

» The problem becomes easier: We improve a solution instead
of computing an optimal solution directly.

» Optimize results from approximation algorithms and heuristics.
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Discussion
Advantages
» The problem becomes easier: We improve a solution instead

of computing an optimal solution directly.
» Optimize results from approximation algorithms and heuristics.

Drawbacks

> “Bottleneck” 2.
» The design of the compression routine still can be difficult.

Future Work

» Characterize problems amenable to solution compression.

» How can iterative compression be combined with other
techniques?

» Apply to maximization problems.
14



A Candidate Problem for Future Research
MiNIMUM VERTEX MuLTiwAy CUT

Input: A graph G = (V, E), a set of terminals T C V, and
an integer k > 0.
Output: Is there a subset X C V of at most k vertices such
that no two vertices of T belong to the same
connected component of G[V\ X]?
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A Candidate Problem for Future Research
MiNIMUM VERTEX MuLTiwAy CUT

Input: A graph G = (V, E), a set of terminals T C V, and
an integer k > 0.

Output: Is there a subset X C V of at most k vertices such
that no two vertices of T belong to the same
connected component of G[V\ X]?

e N

» NP-complete [Cunninciian, DIMACS Series in DM and TCS, vol. 5, 1991]

Known Results

» Fixed-parameter tractable O(ck3 - poly(n)) [Marx, IWPEC 2004]
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Thank you!
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