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Parameterized Approach to Hard Problems

We want an exact algorithm, but that implies exponential runtime.

Parameterized approach

Try to confine the combinatorial explosion to a parameter k.

Fixed-Parameter Tractability

A problem is fixed-parameter tractable if it can be solved
in O(f (k) · nO(1)) time.

Example

Vertex Cover can be solved in time O(1.2852k + k|V |).
k: size of the vertex cover
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Techniques to Show Fixed-Parameter Tractability

Established Techniques

I Kernelizations

I Depth-bounded search trees

I Dynamic Programming

I Tree Decompositions

I . . .

Recent Approach

I Iterative compression
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Iterative Compression

Core Idea
Inductive approach: Compute a solution for a problem instance
using the information provided by a solution for a smaller instance.

In terms of a minimization problem on graphs

Compute a solution X for a problem instance (G , k) using the
information provided by a solution X ′ for a subinstance (G − v , k).

Example for this talk

Feedback Vertex Set in Tournaments.
[Dom, Guo, Hüffner, Niedermeier, and Truß, CIAC 2006]
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[Dom, Guo, Hüffner, Niedermeier, and Truß, CIAC 2006]

4



Feedback Vertex Set in Tournaments

Definition (Feedback Vertex Set in Tournaments)

Input: Tournament G = (V ,E ), integer k ≥ 0.

Output: Is there a subset X ⊆ V of at most k vertices such
that G [V \ X ] has no cycles?

Feedback Vertex Set in Tournaments is NP-complete
[Speckenmeyer, WG 1989]
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Iterative Compression Framework

Idea
Use a compression routine iteratively: Given a solution of
size k + 1, compute a solution of size k.
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

Iterative Compression Framework for Feedback Vertex Set in
Tournaments

1. Start with an empty graph G ′ and an empty solution X .

2. For each vertex v in G :

2.1 Add v to G ′ and to X .
2.2 Use the compression routine to compress X .
2.3 If |X | > k, then return “NO”.

Invariant during the loop:
X is a solution of size at most k for the current graph G ′.
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Compression Routine (1)

Task
Given a solution X of size k + 1, compute a solution X ′ of size k.

Approach

Try all 2|X | partitions of X into a part to exchange (S) and a part
to keep (X \ S).
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Compression Routine (2)

S

X

V

V \ S

(Lemma: A tournament contains a cycle iff it contains a triangle.)
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Topological Sorts

I G [S ] is cycle-free ⇒
S has topological sort s1, . . . , s|S |.

I G [V \ S ] is cycle-free ⇒
V \ S has topological sort.

S

X

V

V \ S

Goal: Insert a maximum subset of V \ S into s1, . . . , s|S |.

Observation: Every vertex v of V \ S has a “natural position” p(v)
relative to the vertices of S .
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Longest Common Subsequence

V \ S

S

The vertices (V \ S) \ F must be sortable in such a way that

I the topological sort of V \ S is preserved, and

I the sort of V \ S by “natural position” p is preserved.

⇒ Search for the longest common subsequence of both sorts.
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Example

I V \ S sorted topologically: abcde

I V \ S sorted by p: abdce

I A longest common subsequence is abce

a b c d e

V \ S

S
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Overall Running Time

Time consumption:

I n iterations of the compression routine;

I 2k+1 partitions per iteration;

I time O(n · k) for destroying triangles, time O(n log n) for
sorting vertices and finding the longest common subsequence.

Running time for solving Feedback Vertex Set in
Tournaments:

O(2k · n2(log n + k))
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Applications of Iterative Compression

I Graph Bipartization O(3kkmn)
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

I Edge Bipartization O(2km2)
[Guo, Gramm, Hüffner, Niedermeier, and Wernicke, WADS 2005]

I Feedback Vertex Set O(ckm)
[Dehne, Fellows, Langston, Rosamond, and Stevens, COCOON 2005]

[Guo, Gramm, Hüffner, Niedermeier, and Wernicke, WADS 2005]

I Feedback Vertex Set in Tournaments
O(2kn2(lg n + k))
[Dom, Guo, Hüffner, Niedermeier, and Truß, CIAC 2006]

I Chordal Deletion
[Marx, WG 2006]

I Implementation of Graph Bipartization O(3kmn)
[Hüffner, WEA 2005]
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Discussion

Advantages

I The problem becomes easier: We improve a solution instead
of computing an optimal solution directly.

I Optimize results from approximation algorithms and heuristics.

Drawbacks

I “Bottleneck” 2k .

I The design of the compression routine still can be difficult.

Future Work

I Characterize problems amenable to solution compression.

I How can iterative compression be combined with other
techniques?

I Apply to maximization problems.

14



Discussion

Advantages

I The problem becomes easier: We improve a solution instead
of computing an optimal solution directly.

I Optimize results from approximation algorithms and heuristics.

Drawbacks

I “Bottleneck” 2k .

I The design of the compression routine still can be difficult.

Future Work

I Characterize problems amenable to solution compression.

I How can iterative compression be combined with other
techniques?

I Apply to maximization problems.

14



Discussion

Advantages

I The problem becomes easier: We improve a solution instead
of computing an optimal solution directly.

I Optimize results from approximation algorithms and heuristics.

Drawbacks

I “Bottleneck” 2k .

I The design of the compression routine still can be difficult.

Future Work

I Characterize problems amenable to solution compression.

I How can iterative compression be combined with other
techniques?

I Apply to maximization problems.

14



A Candidate Problem for Future Research

Minimum Vertex Multiway Cut

Input: A graph G = (V ,E ), a set of terminals T ⊆ V , and
an integer k ≥ 0.

Output: Is there a subset X ⊆ V of at most k vertices such
that no two vertices of T belong to the same
connected component of G [V \ X ]?

Known Results

I NP-complete [Cunningham, DIMACS Series in DM and TCS, vol. 5, 1991]

I Fixed-parameter tractable O(ck3 · poly(n)) [Marx, IWPEC 2004]
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Thank you!

16


	Fixed-Parameter Tractability
	Iterative Compression
	Example: Feedback Vertex Set in Tournaments
	Discussion


