Introduction	Speedup	Experiments on Synthetic Data	Experiments on Financial Data

Enumerating Isolated Cliques in Synthetic and Financial Networks

Falk Hüffner Christian Komusiewicz <u>Hannes Moser</u> Rolf Niedermeier

> Friedrich-Schiller-Universität Jena Institut für Informatik

> > August 22, 2008

Task: Enumerate all maximal cliques, that is, all vertex subsets $C \subseteq V$ such that G[C] is complete and there is no $C' \supset C$ such that G[C'] is complete.

Applications

- ► Computational finance [BOGINSKI ET AL., Comput. Oper. Res., 2006]
- ▶ Biological networks [CHESLER ET AL., Nature Genetics, 2005]
- Social networks, clustering in data mining [MAKINO & UNO, SWAT 2004]

Introduction 0●00	Speedup 00	Experiments on Synthetic Data	Experiments on Financial Data
Clique Enum	neration		

Maximal Clique Enumeration

- Simple model
- ▶ NP-hard [Garey & Johnson, 1979]
- ▶ up to 3^{n/3} cliques [MOON & MOSER, Israel J. Math., 1965]

Introduction 0●00	Speedup 00	Experiments on Synthetic Data	Experiments on Financial Data
Clique Enum	neration		

Maximal Clique Enumeration

- Simple model
- ▶ NP-hard [Garey & Johnson, 1979]
- ▶ up to 3^{n/3} cliques [MOON & MOSER, Israel J. Math., 1965]

Isolated Cliques

- More specific model
- More efficient enumeration algorithms

Introduction 00●0	Speedup 00	Experiments on Synthetic Data	Experiments on Financial Data
c-lsolation			

Definition [ITO, IWAMA, OSUMI, ESA 2005]

A vertex set ${\it S}$ is called avg-c-isolated if on average the vertices

in S have less than c neighbors outside of S.

Example: avg-2-isolation

 Introduction
 Speedup
 Experiments on Synthetic Data
 Experiments on Financial Data

 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Running times for enumeration of maximal *c*-isolated cliques min-*c*-isolation $O(2^c \cdot cm + nm)$ avg-*c*-isolation $O(4^c \cdot c^4m)$ max-*c*-isolation $O(2.44^c \cdot cm)$

[Komusiewicz et al., COCOON 2007]

Known avg-c-isolation algorithm:

- Algorithm enumerates $O(2^c)$ cliques
- ► Filter out nonmaximal cliques by pairwise comparison → O(4^c)

Idea

Determine maximality independently for each clique.

▶ $S \subseteq D$ with $D := (\bigcap_{v \in C} N(v)) \setminus C$

- ► $S \subseteq D$ with $D := (\bigcap_{v \in C} N(v)) \setminus C$
- ▶ |D| < c

- ▶ $S \subseteq D$ with $D := (\bigcap_{v \in C} N(v)) \setminus C$
- ▶ |D| < c
- Enumerate maximal cliques D' in D

- ▶ $S \subseteq D$ with $D := (\bigcap_{v \in C} N(v)) \setminus C$
- ▶ |D| < c
- Enumerate maximal cliques D' in D
- Remaining task: is there a clique S ⊆ D' such that C ∪ S is an avg-c-isolated clique?

Maximality Test

- ▶ $S \subseteq D$ with $D := (\bigcap_{v \in C} N(v)) \setminus C$
- ▶ |D| < c
- Enumerate maximal cliques D' in D
- Remaining task: is there a clique S ⊆ D' such that C ∪ S is an avg-c-isolated clique?
- Remove vertices from D' in order of highest degree

- ▶ $S \subseteq D$ with $D := (\bigcap_{v \in C} N(v)) \setminus C$
- ▶ |D| < c
- Enumerate maximal cliques D' in D
- Remaining task: is there a clique S ⊆ D' such that C ∪ S is an avg-c-isolated clique?
- Remove vertices from D' in order of highest degree

Theorem

All maximal c-isolated cliques can be enumerated in $O(2.89^c \cdot c^2 \cdot m)$ time.

 $G_{n,m,p}$ Model [BEHRISCH & TARAZ, Theoret. Comput. Sci., 2006]

Each of n vertices draws each of m features with probability p, and two vertices are connected by an edge iff they have at least one feature in common.

 $\begin{array}{cccc}
 & \bigcirc & \bigcirc & \bigcirc \\
 m = 3 & & & \\
 n = 6 & & & \bigcirc & \bigcirc & \bigcirc \\
\end{array}$

Introduction	Speedup	Experiments on Synthetic Data	Experiments on Financial Data
0000	00	•000	
Synthetic I	Data: G _{nmn}	Model	

 $G_{n,m,p}$ Model [Behrisch & Taraz, Theoret. Comput. Sci., 2006]

Each of n vertices draws each of m features with probability p, and two vertices are connected by an edge iff they have at least one feature in common.

	{1} O	{1,2} O	{3} O
<i>m</i> = 3			
<i>n</i> = 6	0	0	0
	$\{1\}$	$\{1, 2\}$	$\{2, 3\}$

Introduction	Speedup	Experiments on Synthetic Data	Experiments on Financial Data
0000	00	•000	0000
Synthetic D	ata: $G_{n,m,n}$	Model	

 $G_{n,m,p}$ Model [Behrisch & Taraz, Theoret. Comput. Sci., 2006]

Each of n vertices draws each of m features with probability p, and two vertices are connected by an edge iff they have at least one feature in common.

Introduction	Speedup	Experiments on Synthetic Data	Experiments on Financial Data
0000	00	•000	
Synthetic D	ata: $G_{n,m,n}$	Model	

 $G_{n,m,p}$ Model [BEHRISCH & TARAZ, Theoret. Comput. Sci., 2006]

Each of n vertices draws each of m features with probability p, and two vertices are connected by an edge iff they have at least one feature in common.

- Each feature induces a clique.
- ► Every nonempty intersection of feature cliques is a clique ~→ we obtain many cliques.

Introduction	Speedup	Experiments on Synthetic Data	Experiments on Financial Data
0000	00	0●00	
$\overline{G_{n,m,p}}$ Mo	del		

Introduction	Speedup	Experiments on Synthetic Data	Experiments on Financial Data
0000	00	00●0	
G _{nmn} Mod	el		

"bk" is an improved variant of the standard Bron-Kerbosch algorithm, which enumerates all maximal cliques.

[KOCH, Theoret. Comput. Sci., 2001]

 $G_{n,m,p}$

Introduction	Speedup	Experiments on Synthetic Data	Experiments on Financial Data
0000	00		•000
Stock Data			

Market Graph [MANTEGNA & STANLEY, 2000]

- Stocks are vertices.
- Two stocks are connected iff the correlation of the daily fluctuations of their prices exceeds some threshold.

(chart data from 2008 Yahoo! Inc.)

Introduction 0000	Speedup 00	Experiments on Synthetic Data	Experiments on Financial Data
Stock Data			

Introduction 0000	Speedup 00	Experiments on Synthetic Data	Experiments on Financial Data
Stock Data			

Introduction 0000	Speedup 00	Experiments on Synthetic Data	Experiments on Financial Data
Summary			

- Enumerating min- and max-isolated cliques is feasible over a very large range of instances and parameters.
- Sometimes even beats Bron–Kerbosch for enumerating all maximal cliques.
- Avg-isolation more limited.
- Isolation leads to "interesting" cliques, like, e.g., sets of stocks with unusual performance.

Other Applications

- ► Finding complexes in protein interaction networks.
- Finding communities in web graphs.
- Finding genres in music artist similarity networks.