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Clique Enumeration

Input: An undirected graph G = (V ,E ).

Task: Enumerate all maximal cliques, that is, all vertex
subsets C ⊆ V such that G [C ] is complete and there
is no C ′ ⊃ C such that G [C ′] is complete.

Applications

I Computational finance [Boginski et al., Comput. Oper. Res., 2006]

I Biological networks [Chesler et al., Nature Genetics, 2005]

I Social networks, clustering in data mining
[Makino & Uno, SWAT 2004]
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Clique Enumeration

Maximal Clique Enumeration

I Simple model

I NP-hard [Garey & Johnson, 1979]

I up to 3n/3 cliques [Moon & Moser, Israel J. Math., 1965]

Isolated Cliques

I More specific model

I More efficient enumeration algorithms
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Hüffner et al. (Jena) Enumerating Isolated Cliques in Synthetic and Financial Networks 3/15



Introduction Speedup Experiments on Synthetic Data Experiments on Financial Data

c-Isolation

Definition [Ito, Iwama, Osumi, ESA 2005]

A vertex set S is called avg-c-isolated if on average the vertices
in S have less than c neighbors outside of S .

Example: avg-2-isolation
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Comparison of Isolation Concepts

 min−2−isolated max−2−isolatedavg−2−isolated

Running times for enumeration of maximal c-isolated cliques
min-c-isolation O(2c · cm + nm)
avg-c-isolation O(4c · c4m)
max-c-isolation O(2.44c · cm)

[Komusiewicz et al., COCOON 2007]
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Maximality Test

Known avg-c-isolation algorithm:

I Algorithm enumerates O(2c) cliques

I Filter out nonmaximal cliques by pairwise comparison
 O(4c)

Idea
Determine maximality independently for each clique.
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Maximality Test

If an avg-c-isolated clique C is not maximal, then there must
be S ⊆ V such that C ∪ S is an avg-c-isolated clique.

I S ⊆ D with D :=
(⋂

v∈C N(v)
)
\ C

I |D| < c

I Enumerate maximal cliques D ′ in D

I Remaining task: is there a clique S ⊆ D ′

such that C ∪ S is an avg-c-isolated clique?

I Remove vertices from D ′ in order of highest
degree

D D ′

C

S

Theorem
All maximal c-isolated cliques can be enumerated in
O(2.89c · c2 · m) time.
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Synthetic Data: Gn,m,p Model

Gn,m,p Model [Behrisch & Taraz, Theoret. Comput. Sci., 2006]

Each of n vertices draws each of m features with probability p, and
two vertices are connected by an edge iff they have at least one
feature in common.

m = 3
n = 6

I Each feature induces a clique.

I Every nonempty intersection of feature cliques is a clique  
we obtain many cliques.
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Hüffner et al. (Jena) Enumerating Isolated Cliques in Synthetic and Financial Networks 8/15



Introduction Speedup Experiments on Synthetic Data Experiments on Financial Data

Synthetic Data: Gn,m,p Model

Gn,m,p Model [Behrisch & Taraz, Theoret. Comput. Sci., 2006]

Each of n vertices draws each of m features with probability p, and
two vertices are connected by an edge iff they have at least one
feature in common.

{1}

{2, 3}{1} {1, 2}

{1, 2} {3}

m = 3
n = 6

I Each feature induces a clique.

I Every nonempty intersection of feature cliques is a clique  
we obtain many cliques.
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Gn,m,p Model

n=200,m=45,p=0.1
n = 200, m = 45, p = 0.1
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Gn,m,p Model

m = 45, p = 0.1
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“bk” is an improved variant of the standard Bron–Kerbosch
algorithm, which enumerates all maximal cliques.
[Koch, Theoret. Comput. Sci., 2001]
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Gn,m,p Model
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Stock Data

Market Graph [Mantegna & Stanley, 2000]

I Stocks are vertices.

I Two stocks are connected iff the correlation of the daily
fluctuations of their prices exceeds some threshold.

(chart data from 2008 Yahoo! Inc.)

great basin gold Ltd.

el dorado gold corp.apex silver mines

central fund of canada
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Stock Data

threshold = 0.5
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Stock Data

threshold = 0.5 c = 60
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Summary

I Enumerating min- and max-isolated cliques is feasible over a
very large range of instances and parameters.

I Sometimes even beats Bron–Kerbosch for enumerating all
maximal cliques.

I Avg-isolation more limited.

I Isolation leads to “interesting” cliques, like, e.g., sets of
stocks with unusual performance.

Other Applications

I Finding complexes in protein interaction networks.

I Finding communities in web graphs.

I Finding genres in music artist similarity networks.
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