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Starting Example

Vertex Bipartization

Input: An undirected graph G = (V , E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set X ⊆ V , |X | ≤ k, such
that G [V \ X ] contains no odd-length cycle?

Example

Theorem: Vertex Bipartization is NP-complete
[Lewis and Yannakakis, Journal of Computer and System Sciences 20, 1980]
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Fixed-Parameter Tractability

Fixed-Parameter Tractability

A parameterized problem with input instance (G , k) is
fixed-parameter tractable with respect to parameter k if it can be
solved in f (k) · poly(|G |) time.

Theorem
Vertex Bipartization can be solved in O(3k ·mn) time.
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

[Hüffner, Journal of Graph Algorithms and Applications 13, 2009]

[Lokshtanov, Saurabh, and Sikdar, IWOCA 2009]

Technique: “Iterative Compression”
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[Hüffner, Journal of Graph Algorithms and Applications 13, 2009]

[Lokshtanov, Saurabh, and Sikdar, IWOCA 2009]

Technique: “Iterative Compression”

Fellows, Guo, Moser, Niedermeier A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems 3/22



Introduction Iterative Compression Framework Vertex Deletion Problems and Iterative Compression NP-Hardness Proof Outlook

Fixed-Parameter Tractability

Fixed-Parameter Tractability

A parameterized problem with input instance (G , k) is
fixed-parameter tractable with respect to parameter k if it can be
solved in f (k) · poly(|G |) time.

Theorem
Vertex Bipartization can be solved in O(3k ·mn) time.
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]
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Some Applications of Iterative Compression

I Undirected Feedback Vertex Set in O(5k · kn2) time
[Chen et al., Journal of Computer and System Sciences 74, 2008]

I Directed Feedback Vertex Set in O(k! · 4k · k3n4) time
[Chen et al., Journal of the ACM 55, 2008]

I Directed Feedback Vertex Set in Tournaments
in O(2k · n2(log log n + k)) time [Dom et al., CIAC 2006]

I Signed Graph Balancing in O(2k ·m2) time
[Hüffner, Betzler, and Niedermeier, Journal of Combinatorial Optimization,

2009]

I Chordal Deletion is FPT [Marx, Algorithmica, 2009]

I Cluster Vertex Deletion in O(2k · k6 log k + nm) time
[Hüffner et al., Theory of Computing Systems, 2009]

I Almost 2-Sat in O(15k · km3) time
[Razgon and O’Sullivan, Journal of Computer and System Sciences, 2009]

Fellows, Guo, Moser, Niedermeier A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems 4/22



Introduction Iterative Compression Framework Vertex Deletion Problems and Iterative Compression NP-Hardness Proof Outlook

Iterative Compression: Example

Vertex Cover

Input: An undirected graph G = (V , E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set X ⊆ V , |X | ≤ k, such that
each edge has a least one endpoint in X ?

Example

Fellows, Guo, Moser, Niedermeier A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems 5/22



Introduction Iterative Compression Framework Vertex Deletion Problems and Iterative Compression NP-Hardness Proof Outlook

Iterative Compression: Example

Vertex Cover

Input: An undirected graph G = (V , E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set X ⊆ V , |X | ≤ k, such that
each edge has a least one endpoint in X ?

Example

Fellows, Guo, Moser, Niedermeier A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems 5/22



Introduction Iterative Compression Framework Vertex Deletion Problems and Iterative Compression NP-Hardness Proof Outlook

Iterative Compression Framework

Idea
Use a compression routine iteratively: Given a solution of size k + 1
for a graph G , compute a solution of smallest size for G .
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

Iterative Compression Framework

1. Start with an empty vertex set V ′ and an empty solution X .

2. For each vertex v in V (G ):

2.1 Add v to V ′ and to X .
2.2 Use the compression routine to compress the solution X

for G [V ′].
2.3 If |X | > k , then return “no-instance”.

Invariant during the loop for a yes-instance:
After the compression, X is a solution of size at most k for the
current graph G [V ′].

Fellows, Guo, Moser, Niedermeier A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems 6/22



Introduction Iterative Compression Framework Vertex Deletion Problems and Iterative Compression NP-Hardness Proof Outlook

Iterative Compression Framework

Idea
Use a compression routine iteratively: Given a solution of size k + 1
for a graph G , compute a solution of smallest size for G .
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

Iterative Compression Framework

1. Start with an empty vertex set V ′ and an empty solution X .

2. For each vertex v in V (G ):

2.1 Add v to V ′ and to X .
2.2 Use the compression routine to compress the solution X

for G [V ′].
2.3 If |X | > k , then return “no-instance”.

Invariant during the loop for a yes-instance:
After the compression, X is a solution of size at most k for the
current graph G [V ′].

Fellows, Guo, Moser, Niedermeier A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems 6/22



Introduction Iterative Compression Framework Vertex Deletion Problems and Iterative Compression NP-Hardness Proof Outlook

Iterative Compression Framework

Idea
Use a compression routine iteratively: Given a solution of size k + 1
for a graph G , compute a solution of smallest size for G .
[Reed, Smith, and Vetta, Operations Research Letters 32, 2004]

Iterative Compression Framework

1. Start with an empty vertex set V ′ and an empty solution X .

2. For each vertex v in V (G ):

2.1 Add v to V ′ and to X .
2.2 Use the compression routine to compress the solution X

for G [V ′].
2.3 If |X | > k , then return “no-instance”.

Invariant during the loop for a yes-instance:
After the compression, X is a solution of size at most k for the
current graph G [V ′].

Fellows, Guo, Moser, Niedermeier A Complexity Dichotomy for Finding Disjoint Solutions of Vertex Deletion Problems 6/22



Introduction Iterative Compression Framework Vertex Deletion Problems and Iterative Compression NP-Hardness Proof Outlook

Compression Routine (1)

Task
Given a solution X of size k + 1, compute a smallest solution X ′.

Approach

Try all 2|X | partitions of X into a part to exchange (S) and a part
to keep (X \ S).
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Compression Routine (2)

S

X

V

V \ S

Compression for Vertex Cover

If |N(S)| < |S |, then return N(S), else return “no”.

Running time: O(n + m)
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Overall Running Time

Time Consumption

I n iterations of the compression routine;

I 2k+1 partitions per iteration;

I time O(n + m) for each compression.

Running time for solving Vertex Cover

O(2k · n(n + m))
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Compression Routines for Known Applications

I Vertex Bipartization
brute force: O(2k · km) time

I Undirected Feedback Vertex Set
bounded search tree: O(4k · n2) time

I Cluster Vertex Deletion
reduction to the polynomial-time solvable Weighted Maximum
Matching problem: O(m

√
n log n) time

I Directed Feedback Vertex Set
brute force combined with bounded search tree:
O(k!4k · k2n3) time

I Directed Feedback Vertex Set in tournaments
reduction to the polynomial-time solvable Longest Common
Subsequence problem: O(n(log log n + k)) time
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Vertex Deletion Problems

A graph property Π is a (possibly infinite) set of graphs.

Π Vertex Deletion

Input: An undirected graph G = (V , E ) and a
parameter k ≥ 0.

Question: Can we find a vertex set X ⊆ V , |X | ≤ k, such
that G [V \ X ] ∈ Π?

Examples
problem graph property Π
Vertex Cover set of all graphs without edges
Feedback Vertex Set set of all forests (acyclic graphs)
Vertex Bipartization set of all bipartite graphs
Cluster Vertex Deletion set of all cluster graphs1

1Graphs whose connected components are cliques.
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Compression Task for Vertex Deletion Problems

Disjoint Π Vertex Deletion

Input: An undirected graph G = (V , E ) and a vertex
subset S ⊆ V such that G [V \ S ] ∈ Π.

Question: Can we find a vertex set S ′ ⊆ V , such
that S ′ ∩ S = ∅, |S ′| < |S | and G [V \ S ′] ∈ Π?

We restrict our attention to graph properties such that

I for all V ′ ⊆ V , G ∈ Π⇒ G [V ′] ∈ Π (Π is hereditary)

I If every connected component of a graph is in Π, then the
graph is in Π (Π is determined by the components)

(All the problems on undirected graphs mentioned before are based
on such properties.)
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Forbidden Induced Subgraph Characterization

For any hereditary graph property Π there exists a set HΠ of
inclusion-minimal forbidden induced subgraphs for Π.
[Greenwell, Hemminger, and Klerlein, 1973]

Examples

property Π HΠ

set of all graphs without edges { }

set of all forests (acyclic graphs) { , , , . . .}

set of all bipartite graphs { , , . . .}
set of all cluster graphs { }
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Complexity Dichotomy for the Compression Task

Main Theorem
Disjoint Π Vertex Deletion is NP-hard unless the set HΠ of
forbidden induced subgraphs corresponding to Π contains a single
edge or a path of length two—in these cases it is polynomial-time
solvable.

P

{ }
{ }

{ , }

{ , }

{ , }
...

NP-hard all other graph properties
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Example Problems

P
Vertex Cover
Cluster Vertex Deletion

NP-hard

Vertex Bipartization
Undirected Feedback Vertex Set
Chordal Deletion
Planar Deletion
Bounded-Degree Deletion
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Polynomial-Time Solvable Cases

HΠ compression algorithm

{ } trivial

{ } reduction to Maximum Matching
[Hüffner et al., Theory of Computing Systems, 2009]

{ , } reduction to Maximum Matching + size limit 2

{ , } reduction to Maximum Matching + size limit 3

{ , } reduction to Maximum Matching + size limit 4
...
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NP-Hardness: Basic Reduction Scheme

Let H be a “properly chosen” graph from HΠ.
[Lewis and Yannakakis, Journal of Computer and System Sciences 20, 1980]

c
J ′

c : cut-vertex that defines α-sequence of H

J ′: largest component in H − c

H
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Observation
For the reduction scheme to work, the old solution S must not
contain vertices corresponding to vertices in the Vertex Cover
instance, but it has to obstruct all forbidden induced subgraphs
in HΠ.

Cases

I All graphs in HΠ contain a K3 ( ).
⇒ reduce from Vertex Cover on K3-free graphs

I HΠ contains no stars ( ).
⇒ reduce from Vertex Cover on K3-free graphs, where H is a
“properly chosen” graph among all K3-free graphs in HΠ

I HΠ contains a star.
Reduction scheme does not seem to work...
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Reduction for Large Stars

HΠ contains a star with at least four leaves ⇒ reduction from
Vertex Cover on graphs of maximum degree three.

H

Does not work for stars with three leaves ( ). . .
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Reduction for Small Stars

HΠ contains a and a .
⇒ Reduction from 3-CNF-SAT.

C2C1

(y1 ∨ ¬y2 ∨ ¬y3)(¬y1 ∨ y2 ∨ y3)

Y1

−+
+ Y2

−
+ Y3

−+
+

+

HΠ contains a and no .
⇒ Similar reduction from 3-CNF-SAT.
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Outlook

I Study Disjoint Π Vertex Deletion in directed graphs.

I Study Edge Deletion Problems.

I Consider forbidden induced subgraphs with more than one
connected component.

I Parameterize Disjoint Π Vertex Deletion by the number of
vertices by which the new solution S ′ should at least differ
from the old solution S .
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Thank you!
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